One of the most promising areas of domain in research field is security because of its exponential usage in everyday commercial activities. Due to prevalence diffusion of network connectivity, there is a high demand for protection against cyber-attack which necessitates the importance of intrusion detection system as a significant tool for network security. There are many intrusion detection models available to classify the network traffic s either normal or attack type. Because of huge volume of network traffic data, these classifier techniques fail to attain high detection rate with less false alarms. To overcome the above problem, this paper introduces the potential feature subset selection model using Intuitionistic Fuzzy Mutual Information (IFMI). This model efficiently selects the optimal set of attributes without loss of information even in presence of impreciseness among attributes. This is achieved by representing each attribute in the dataset in terms of degree of membership, non-membership and hesitation. To validate the performance of the IFMI its reduced feature subset is used for classification using random forest classifier. After analyzing the feature subset, the simulation results proved that the proposed model has improved the performance of classifier for predicting the network intrusion attempts. It also helps the classification model to achieve high classification rate and reduced false alarm rate in an optimized way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.