Probabilistic Simple Temporal Networks (PSTN) facilitate solving many interesting scheduling problems by characterizing uncertain task durations with unbounded probabilistic distributions. However, most current approaches assess PSTN performance using normal or uniform distributions of temporal uncertainty. This paper explores how well such approaches extend to families of non-symmetric distributions shown to better represent the temporal uncertainty introduced by, e.g., human teammates by building new PSTN benchmarks. We also build probability-aware variations of current approaches that are more reactive to the shape of the underlying distributions. We empirically evaluate the original and modified approaches over well-established PSTN datasets. Our results demonstrate that alignment between the planning model and reality significantly impacts performance. While our ideas for augmenting existing algorithms to better account for human-style uncertainty yield only marginal gains, our results surprisingly demonstrate that existing methods handle positively-skewed temporal uncertainty better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.