This paper aims to design and simulate a compact dynamic random access memory (DRAM) cell using two-channel spatial wavefunction switched (SWS) field-effect transistor (FET) and two capacitors. One unit of a SWSFET based DRAM cell stores 2-bits, which reduces the overall cell area by 50% as compared to a conventional 1-bit DRAM cell. SWSFETs have two or more vertically stacked quantum well channels as the transport layer between source and drain. In a two quantum channel n-SWSFET, as the gate voltage is raised above threshold, electrons appear in the lower quantum well W2 and this inversion channel connects Source S2 to drain D2. As the gate voltage is further increased, electrons transfer to upper quantum well W1 and now source S1 and drain D1 are connected electrically. Spatial location of electrons allows us to encode as 4 logic states: no electrons 00, electrons in W2 01, electrons is both wells 10 and electrons in well W1. This property of the SWSFET has been shown to implement multi-valued logic circuits. A SWSFET may have 2-4 sources and drains independently operated or connected together depending upon the logic circuit implementation.
This paper presents simulation of spatial wavefunction switched (SWS) field-effect transistors (FETs) comprising of two vertically stacked quantum dot channels. An analog behavior model (ABM) was used to compare the experimental I-V characteristics of a fabricated QD-SWS-FET. Each channel consists of two quantum dot layers and are connected to the dedicated drains D2 and D1, respectively. The fabricated SWS-FET has one source and one gate. The ABM simulation models SWS-FET comprising of two independent conventional BSIM FETs with their (W/L) ratios, capacitances and other device parameters. The agreement in simulation and experimental data will advance modeling of SWS based adders, logic gates and SRAMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.