We revisit the well-known Tkach and Chraplyvy (T-C) diagram of feedback regimes in semiconductor lasers. Our aim is twofold: first, extending the classification of feedback effects in the T-C diagram to short and long external cavities, and to coherent and incoherent interactions; second and more important, identifying in the diagram feedback phenomena that have been meanwhile studied and developed to noteworthy applications, namely, self-mixing, period-1 and multiperiodicity, intermittency and chaos. We complement the feedback diagram with application regions, so as to describe not only feedback effects detrimental to a laser used as the transmitter of an optical link, but also feedback effects in the weak and strong regime of interaction, developed into applications for instrumentation and communications in recent years
In this paper, we report on the fabrication of flexible amorphous-silicon (a-Si) thin-film solar cells on a parylene template carried by a glass plate without any adhesive. The a-Si thin-film solar cells could be separated directly from the glass carrier after a process temperature of up to 200 degrees C. The a-Si and parylene films were deposited using high-frequency plasma-enhanced chemical vapor deposition and a parylene reactor. The parylene-coated glass plate was treated with thermal annealing and Ar, N(2), or O(2) plasma. Moreover, SiN(x) and/or SiO(x) films were used as barrier layers between the transparent conductive oxide and parylene films. Details of different gas plasmas and barrier effects were investigated in terms of surface morphologies and solar cell characteristics. The a-Si thin-film solar cell on a parylene template with an open-circuit voltage of 0.74 V, a short-circuit current density of 15.69 mA/cm(2), a fill factor of 54.98%, and a conversion efficiency of 5.78 % could be obtained. After the 10-mm-radius bending test for 5000 times, the a-Si thin-film solar cells still exhibited a conversion efficiency of 4.94%. These results indicated that a-Si thin-film solar cells on parylene templates have high potential for flexible photovoltaic applications
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.