Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties, and sources are not well understood. Here we show that the concentration of airborne biological particles in a North American forest ecosystem increases significantly during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2–6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including groups containing human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteriaceae, Pseudomonadaceae). In addition to detecting known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN, and rainfall are more tightly coupled than previously assumed
Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2–6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, <i>Enterobacteraceae, Pseudomonadaceae</i>). In addition to known bacterial and fungal IN (<i>Pseudomonas</i> sp., <i>Fusarium sporotrichioides</i>), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (<i>Isaria farinosa</i> and <i>Acremonium implicatum</i>). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed
Ice nucleation on mineral dust particles is known to be an important process in the atmosphere. To accurately implement ice nucleation on mineral dust particles in atmospheric simulations, a suitable theory or scheme is desirable to describe laboratory freezing data in atmospheric models. In the following, we investigated ice nucleation by supermicron mineral dust particles [kaolinite and Arizona Test Dust (ATD)] in the immersion mode. The median freezing temperature for ATD was measured to be approximately -30 °C compared with approximately -36 °C for kaolinite. The freezing results were then used to test four different schemes previously used to describe ice nucleation in atmospheric models. In terms of ability to fit the data (quantified by calculating the reduced chi-squared values), the following order was found for ATD (from best to worst): active site, pdf-α, deterministic, single-α. For kaolinite, the following order was found (from best to worst): active site, deterministic, pdf-α, single-α. The variation in the predicted median freezing temperature per decade change in the cooling rate for each of the schemes was also compared with experimental results from other studies. The deterministic model predicts the median freezing temperature to be independent of cooling rate, while experimental results show a weak dependence on cooling rate. The single-α, pdf-α, and active site schemes all agree with the experimental results within roughly a factor of 2. On the basis of our results and previous results where different schemes were tested, the active site scheme is recommended for describing the freezing of ATD and kaolinite particles. We also used our ice nucleation results to determine the ice nucleation active site (INAS) density for the supermicron dust particles tested. Using the data, we show that the INAS densities of supermicron kaolinite and ATD particles studied here are smaller than the INAS densities of submicron kaolinite and ATD particles previously reported in the literature.
Abstract. The micro-orifice uniform deposit impactordroplet freezing technique (MOUDI-DFT) combines particle collection by inertial impaction (via the MOUDI) and a microscope-based immersion freezing apparatus (the DFT) to measure atmospheric concentrations of ice nucleating particles (INPs) as a function of size and temperature. In the first part of this study we improved upon this recently introduced technique. Using optical microscopy, we investigated the non-uniformity of MOUDI aerosol deposits at spatial resolutions of 1, 0.25 mm, and for some stages when necessary 0.10 mm. The results from these measurements show that at a spatial resolution of 1 mm and less, the concentration of particles along the MOUDI aerosol deposits can vary by an order of magnitude or more. Since the total area of a MOUDI aerosol deposit ranges from 425 to 605 mm 2 and the area analyzed by the DFT is approximately 1.2 mm 2 , this non-uniformity needs to be taken into account when using the MOUDI-DFT to determine atmospheric concentrations of INPs. Measurements of the non-uniformity of the MOUDI aerosol deposits were used to select positions on the deposits that had relatively small variations in particle concentration and to build substrate holders for the different MOUDI stages. These substrate holders improve reproducibility by holding the substrate in the same location for each measurement and ensure that DFT analysis is only performed on substrate regions with relatively small variations in particle concentration. In addition, the deposit non-uniformity was used to determine correction factors that take the non-uniformity into account when determining atmospheric concentrations of INPs. In the second part of this study, the MOUDI-DFT utilizing the new substrate holders was compared to the continuous flow diffusion chamber (CFDC) technique of Colorado State University. The intercomparison was done using INP concentrations found by the two instruments during ambient measurements of continental aerosols. Results from two sampling periods were compared, and the INP concentrations determined by the two techniques agreed within experimental uncertainty. The agreement observed here is commensurate with the level of agreement found in other studies where CFDC results were compared to INP concentrations measured with other methods.
Information on what aerosol particle types are the major sources of ice nucleating particles (INPs) in the atmosphere is needed for climate predictions. To determine which aerosol particles are the major sources of immersion-mode INPs at a coastal site in Western Canada, we investigated correlations between INP number concentrations and both concentrations of different atmospheric particles and meteorological conditions. We show that INP number concentrations are strongly correlated with the number concentrations of fluorescent bioparticles between -15 and -25 degrees C, and that the size distribution of INPs is most consistent with the size distribution of fluorescent bioparticles. We conclude that biological particles were likely the major source of ice nuclei at freezing temperatures between -15 and -25 degrees C at this site for the time period studied. At -30 degrees C, INP number concentrations are also well correlated with number concentrations of the total aerosol particles >= 0.5 mu m, suggesting that non-biological particles may have an important contribution to the population of INPs active at this temperature. As we found that black carbon particles were unlikely to be a major source of ice nuclei during this study, these non-biological INPs may include mineral dust. Furthermore, correlations involving chemical tracers of marine aerosols and marine biological activity, sodium and methanesulfonic acid, indicate that the majority of INPs measured at the coastal site likely originated from terrestrial rather than marine sources. Finally, six existing empirical parameterizations of ice nucleation were tested to determine if they accurately predict the measured INP number concentrations. We found that none of the parameterizations selected are capable of predicting INP number concentrations with high accuracy over the entire temperature range investigated. This finding illustrates that additional measurements are needed to improve parameterizations of INPs and their subsequent climatic impacts
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.