Chloroform has been reported to induce cancer in rodents after chronic administration of high doses by gavage. However, the interpretation of these findings is hampered by a lack of knowledge concerning the relative roles of genetic and nongenetic mechanisms in these bioassays. The present studies were carried out in male B6C3F1 mice in order to investigate the potential of chloroform to induce genetic damage and/or organ toxicity at the sites where tumors have been observed in the various bioassays. These studies revealed that carcinogenic doses of chloroform produced severe necrosis at the sites where tumors later developed. This was demonstrated by light microscopy as well as by determination of the cellular regeneration index following administration of 3H-thymidine. Noncarcinogenic doses of chloroform failed to induce these responses. In contrast, studies of DNA alkylation and DNA repair in vivo failed to give any indication that chloroform had produced the type of genetic alterations associated with known genotoxic chemicals. These data suggest that the-primary mechanism of chloroform-induced carcinogenesis is nongenetic in nature. If the same mechanism predominates in man, there should be little to no carcinogenic risk associated with exposure to noncytotoxic levels of chloroform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.