Abstract. This paper describes the use of matched asymptotic expansions to illuminate the description of functions exhibiting Stokes phenomenon. In particular the approach highlights the way in which the local structure and the possibility of finding Stokes multipliers explicitly depend on the behaviour of the coefficients of the relevant asymptotic expansions.
The article surveys the application of complex-ray theory to the scalar Helmholtz equation in two dimensions. The first objective is to motivate a framework within which complex rays may be used to make predictions about wavefields in a wide variety of geometrical configurations. A crucial ingredient in this framework is the role played by Stokes' phenomenon in determining the regions of existence of complex rays. The identification of the Stokes surfaces emerges as a key step in the approximation procedure, and this leads to the consideration of the many characterizations of Stokes surfaces, including the adaptation and application of recent developments in exponential asymptotics to the complex Wentzel-Kramers-Brilbuin expansion of these wavefields. Examples are given for several cases of physical importance.
We construct an asymptotic representation for the solution u(x, t) of a singularly-perturbed linear fifth-order evolution equation which accounts for the relevant exponentially-small terms in all regions of the complex x plane. The particular equation that we study is chosen in part to highlight the complexities that arise in high-order examples, resulting in particular from the non-existence of a suitable (steady-state) heteroclinic connection. Key points of this calculation are the identification, location and evolution of the active (in the sense that non-zero, though exponentially-small, terms are switched on across them) Stokes lines, and of the higher-order Stokes lines across which these can be activated or inactivated. In doing so, we need in particular to analyse two 'levels' of higher-order Stokes lines and to present the associated mechanisms by which they can themselves be activated or inactivated. By piecing together the information concerning which Stokes lines (both ordinary and higher-order) are active, we are able to deduce systematically which of the competing exponentials that can potentially arise within the asymptotic solution are actually present in each region of the complex plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.