We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, T eff , were available for the entire ensemble from complementary photometry; spectroscopic estimates of T eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogenous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-bystar basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the individual frequency data is most important.
We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well represented by Fe lines. Relative abundances of light elements (CNO) and α elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The accuracy on the log g parameter is better than 0.03 dex and is held fixed in the analysis. We compare our T eff determination with a recent colour calibration of V T − K S [TYCHO V magnitude minus Two Micron All Sky Survey (2MASS) K S magnitude] and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets, this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe I-Fe II balance, although we find a small systematic Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Parameters of solar-type Kepler targets 123 offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, α elements and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below −0.3, where α-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars.
The Kepler space telescope detects exoplanets by measuring periodic dimmings of light as a planet passes in front of its host star (1). The majority of the ∼ 150,000 targets observed by Kepler are unevolved stars near the main sequence, because those stars provide the best prospect for detecting habitable planets similar to Earth (2). In contrast, the temperature and surface gravity of indicate that it is an evolved star with exhausted hydrogen in its core, and that it started burning hydrogen in a shell surrounding an inert Helium core. Stellar evolutionary theory predicts that our Sun will evolve into a low-luminosity red giant similar in size to Kepler-56 in roughly 7 billion years.The Kepler planet search pipeline detected two planet candidates orbiting (designated as KOI-1241) (3) with periods of 10.50 and 21.41 days, a nearly 2:1 commensurability. The observation of transit time variations caused by gravitational interactions 2 showed that the two candidates represent objects orbiting the same star, and modeling of these variations led to upper limits on their masses that place them firmly in the planetary regime (4). Kepler-56 is the most evolved star observed by Kepler with more than one detected planet.Transit observations lead to measurements of planet properties relative to stellar properties, and hence accurate knowledge of the host star is required to characterize the system. Asteroseismology enables inference of stellar properties through the measurement of oscillations excited by near-surface convection (5). The power spectrum of the Kepler-56 data after removing the planetary transits shows a regular series of peaks ( Fig. 1), which are characteristic of stellar oscillations. By combining the measured oscillation frequencies with the effective temperature and chemical composition obtained from spectroscopy, we were able to precisely determine the properties of the host star (6). Kepler-56 is more than four times as large as the Sun and its mass is 30% greater (Table 1).Non-radial oscillations in evolved stars are mixed modes, behaving like pressure modes in the envelope and like gravity modes in the core (7,8). Unlike pressure-dominated mixed modes, gravity-dominated mixed modes have frequencies that are shifted from the regular asymptotic spacing. Mixed modes are also approximately equally spaced in period (9). We measured the average period spacing between dipole (l = 1) modes in Kepler-56 to be 50 seconds, consistent with a first ascent red giant (10).Individual mixed dipole modes are further split into multiplets as a result of stellar rotation. Because the modes in each multiplet are on average expected to be excited to very nearly equal amplitudes, the observed relative amplitudes depend only on viewing angle relative to the stellar rotation axis (11). For Kepler-56 several mixed dipole modes show triplets (Fig. 1). A rotation axis perpendicular to the line of sight (inclination i = 90 • for pressure-dominated modes. Simulations confirmed that the inclination measurements are not strongly...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.