Data from the Global Oscillation Network Group (GONG) project and other helioseismic experiments provide a test for models of stellar interiors and for the thermodynamic and radiative properties, on which the models depend, of matter under the extreme conditions found in the sun. Current models are in agreement with the helioseismic inferences, which suggests, for example, that the disagreement between the predicted and observed fluxes of neutrinos from the sun is not caused by errors in the models. However, the GONG data reveal subtle errors in the models, such as an excess in sound speed just beneath the convection zone. These discrepancies indicate effects that have so far not been correctly accounted for; for example, it is plausible that the sound-speed differences reflect weak mixing in stellar interiors, of potential importance to the overall evolution of stars and ultimately to estimates of the age of the galaxy based on stellar evolution calculations.
We construct solar models with the newly calculated radiative opacities from the Opacity Project (OP) and recently determined (lower) heavy element abundances. We compare results from the new models with predictions of a series of models that use OPAL radiative opacities, older determinations of the surface heavy element abundances, and refinements of nuclear reaction rates. For all the variations we consider, solar models that are constructed with the newer and lower heavy element abundances advocated by Asplund et al. (2005) disagree by much more than the estimated measuring errors with helioseismological determinations of the depth of the solar convective zone, the surface helium composition, the internal sound speeds, and the density profile. Using the new OP radiative opacities, the ratio of the 8 B neutrino flux calculated with the older and larger heavy element abundances (or with the newer and lower heavy element abundances) to the total neutrino flux measured by the Sudbury Neutrino Observatory is 1.09 (0.87) with a 9% experimental uncertainty and a 16% theoretical uncertainty, 1σ errors.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R ∼ 22,500), high signal-to-noise ratio (>100), infrared (1.51–1.70 μm) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design—hardware, field placement, target selection, operations—and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.