Industrial computed tomography (CT) has seen widespread adoption within certain areas of non-destructive testing (NDT), with many commercial systems capable of acquisition and reconstruction of cone-beam CT data. The majority of these systems utilise reconstruction algorithms based on the traditional filtered back-projection (FBP) methods, which are imperfect with respect to limited-angle cone-beam data. These techniques are also inherently restricted in the source trajectories that can be utilised due to the use of Fourier slice theorem. This restricts FBP-based techniques to a circular or helical trajectory. Iterative reconstruction algorithms provide a solution to these limitations as the volume reconstruction does not depend on the location or orientation of the source and detector, allowing the possibility of scanning trajectories that satisfy well-known CT data-sufficiency conditions. This paper proposes a method of reconstruction based on computationally efficient computer graphics algorithms with data collected from points in 3D space not restricted to a single circular trajectory, which is useful within NDT for automated robotic inspection. The algorithms developed allow for rapid processing of the algebraic reconstruction technique (ART) for use with X-ray transmission data for CT reconstruction. Experimental results are presented for reconstructions for circular trajectory and points on a sphere to demonstrate the suitability for NDT applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.