We investigate the relation between two types of space curves, the Mannheim curves and constant-pitch curves and primarily explicate a method of deriving Mannheim curves and constant-pitch curves from each other by means of a suitable deformation of a space curve. We define a “radius” function and a “pitch” function for any arbitrary regular space curve and use these to characterize the two classes of curves. A few non-trivial examples of both Mannheim and constant pitch curves are discussed. The geometric nature of Mannheim curves is established by using the notion of osculating helices. The Frenet–Serret motion of a rigid body in theoretical kinematics is studied for the special case of a Mannheim curve and the axodes in this case are deduced. In particular, we show that the fixed axode is developable if and only if the motion trajectory is a Mannheim curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.