The importance of mitochondrial activity has recently been extended to the regulation of developmental processes. Numerous pathologies associated with organelle's dysfunctions emphasize their physiological importance. However, regulation of mitochondrial genome transcription, a key element for organelle's function, remains poorly understood. After characterization in the organelle of a truncated form of the triiodothyronine nuclear receptor (p43), a T3-dependent transcription factor of the mitochondrial genome, our purpose was to search for other mitochondrial receptors involved in the regulation of organelle transcription. We show that a 44 kDa protein related to RXRalpha (mt-RXR), another nuclear receptor, is located in the mitochondrial matrix. We found that mt-RXR is produced after cytosolic or intramitochondrial enzymatic cleavage of the RXRalpha nuclear receptor. After mitochondrial import and binding to specific sequences of the organelle genome, mt-RXR induces a ligand-dependent increase in mitochondrial RNA levels. mt-RXR physically interacts with p43 and acts alone or through a heterodimerical complex activated by 9-cis-retinoic acid and T3 to increase RNA levels. These data indicate that hormonal regulation of mitochondrial transcription occurs through pathways similar to those that take place in the nucleus and open a new way to better understand hormone and vitamin action at the cellular level.
Besides their involvement in the control of nuclear gene expression by activating several peroxisome proliferatoractivated receptors (PPARs), peroxisome proliferators influence mitochondrial activity. By analogy with the previous characterization of a mitochondrial T3 receptor (p43), we searched for the presence of a peroxisome proliferator target in the organelle. Using several antisera raised against different domains of PPARs, we demonstrated by Western blotting, immunoprecipitation and electron microscopy experiments, that a 45 kDa protein related to PPARQ Q2 (mt-PPAR) is located in the matrix of rat liver mitochondria. In addition, we found that the amounts of mt-PPAR are increased by clofibrate treatment. Moreover, in EMSA experiments mt-PPAR bound to a DR2 sequence located in the mitochondrial D-loop, by forming a complex with p43. Last, studies of tissue-specific expression indicated that mt-PPAR is detected in mitochondria of all tissues tested except the brain in amounts positively related to p43 abundance. ß
We have examined the intracellular route, coenzyme conversion and transcytosis rate of [57 Co]-labeled cobalamin (Cbl) in function of its presentation to the apical side of Caco-2 cells, either free or bound to intrinsic factor (IF). The free-presented Cbl was progressively bound to endogenous transcobalamin II (TCII) which may stem, in part, from a basolateral to apical passage. Its transcytosis was TCII-mediated as it was abolished when antibodies to TCII were added to the apical medium. The apparent permeability coefficient (Papp) was estimated at 20.8±3.6, 103.5±17.7, 0.9±0.3 × 10–5 cm/h for TCII-Cbl, IF-Cbl and haptocorrin-Cbl, respectively. Chloroquine inhibited the transcytosis rate of both TCII and IF-bound Cbl in a dose-dependent manner. Approximately 80% of apical Cbl, bound to either exogenous IF or endogenous TCII, was transported to the basolateral side as intact cyano[57Co]Cbl whereas the remainder was converted into Ado-Cbl and CH3-Cbl within the cells, as shown by HPLC analyses of a 1,000-g pellet and a 12,000-g supernatant. Coenzymatic conversion was virtually abolished by chloroquine. In conclusion, we suggest that apically presented free Cbl is internalized via TCII-dependent transport. The apically internalized CN-Cbl, bound to either IF or TCII, is processed via an acidic vesicle and part of it is converted to coenzymes, whereas bulk of CN-Cbl is transcytosed intact.
The expression of peroxisome proliferator-activated receptors alpha (PPARalpha) and gamma (PPARgamma) was studied in the human adenocarcinoma Caco-2 cells induced to differentiate by long term culture (15 days). The differentiation of Caco-2 cells was attested by increases in the activities of sucrase-isomaltase and alkaline phosphatase (two brush border enzymes), fatty acyl-CoA oxidase (AOX) and catalase (two peroxisomal enzymes), by an elevation in the protein levels of villin (a brush border molecular marker), AOX, peroxisomal bifunctional enzyme (PBE), catalase and peroxisomal membrane protein of 70 kDa (PMP70). and by the appearance of peroxisomes. The expression of PPARalpha and PPARgamma was investigated by Western blotting, immunocytochemistry, Northern blotting and S1 nuclease protection assay during the differentiation of Caco-2 cells. The protein levels of PPARalpha, PPARgamma, and PPARgamma2 increased gradually during the time-course of Caco-2 cell differentiation. Immunocytochemistry revealed that PPARalpha and gamma were localized in cell nuclei. The PPARgamma1 protein was encoded by PPARgamma3 mRNA because no signal was obtained for PPARgamma1 mRNA using a specific probe in S1 nuclease protection assay. The amount of PPARgamma3 mRNA increased concomitantly to the resulting PPARgamma1 protein. On the other hand, the mRNA of PPARalpha and PPARgamma2 were not significantly changed, suggesting that the increase in their respective protein was due to an elevation of the translational rate. The role played by the PPAR subtypes in Caco-2 cell differentiation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.