Equation-of-state data and corresponding first-principles theory for the metals Al, Cu, Mo, and Pb are reported over the shock pressure range 0.4–2.4 TPa (4–24 Mbar). Strong shock waves were generated by nuclear explosions and a two-stage light-gas gun. The experimental data occur in the hot liquid-metal regime, where condensed-matter theory applies but with unusually large thermal components to the equation of state.
We calculated the peak particle velocity and peak acceleration at gage locations for the three explosions of the KUCHEN experiment. Our predictions of the peak particle velocities and accelerations are consistent with a variety of other estimates which include surface motion obtained from underground nuclear explosions in alluvium, a tamped HE explosion at the Nevada Test Site, and the ConWep estimates which are used for conventional weapons effects calculations. We also predict the air blast over-pressure and the temperature rise in the air inside the cavity of the decoupled explosion and find that the peak pressure at the top of the cylindrical cavity is about 50 bars and that the shock-wave reverberations inside the cavity have a period of about 100 ms. After a time on the order of 500 ms, the shock wave reverberations inside the cavity of the decoupled explosion are considerably attenuated and the equilibrium state before any significant diffusion or thermal conduction occurs, is a pressure of 5 bars and a temperature of about 11000 C. The instrumentation of the experiment is designed for containment diagnostics, near-field in-situ motion, and ground motion monitoring. The containment diagnostics include an &-blast overpressure gage, an RF Interferometer, a strain gage, two thermocouples and two cavity pressure gages. Additional gages will detect the presence of hazardous detonation products. Near field motion diagnostics include four threeaxis accelerometers at various depths and a single three-axis velocity gage. The seismic ground motion sensors are located in 24 distinct locations and distributed in a modified symmetrical pattern around the borehole. Using a simple constitutive model which correctly predicts peak particle velocity data in porous alluvium, we calculated a decoupling factor that varies from 4 to 11 in the frequency range between 1 and 30 hertz. Using that same constitutive model, we calculated a decoupling factor of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.