Pipe breaks are a recurrent problem in water distribution networks and detecting them quickly is crucial to minimize the economic and environmental costs for municipalities. This study presents a burst detection methodology applying Bayesian dynamic linear models (DLMs) on water flow time series combined with an outlier monitoring tool. The model is used to characterize the actual flow and, for each time, a one‐step ahead forecast distribution is obtained recursively before moving onto the next observation. The outlier detection method consists of comparing the main model with an alternative one wherein the mean flow is shifted to a higher value (as bursts tend to increase flow) to evaluate which model best fit the observed data. If the alternative model is favored, a burst alarm is issued. To verify the performance of this approach, the DLM and monitoring tool were applied on 2 yr of flow data from two district meter areas (DMAs) in Halifax (Canada), and a historical break data set is used to assess model accuracy. The model was able to detect up to 75% and 71.2% of the pipe breaks, with a false alarm rate of 5.15% and 12% in the first and second DMA, respectively. Finally, the proposed model allows for straightforward interpretation of model parameters, nonlinear relationship between flow and predictors of interest, naturally describes the uncertainty for future predictions, can easily accommodate missing values and can be tuned to maximize break detection or minimize false alarm rates to adapt to specific objectives of water infrastructure managers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.