Based on the stochastic Langevin equation, we derived the total friction experienced by a tracer particle diffusing in thermally equilibrated colloidal magnetic fluids. This transport property leads to new expressions for its long-time diffusion coefficients, which satisfy an Einstein relation with the frictions of its translational and rotational Brownian motion. Further use of the nano-rheology theory allowed us to derive also the viscoelastic modulus of the colloid from such a property. The temporal relaxation of the viscoelasticity and transport coefficient turns out to be governed by the intermediate scattering function of the colloid. We derived an explicit formula for this evolution function within a hydrodynamic theory to include rotational degrees of freedom of the particles. In the limit of short frequencies, the viscous moduli render a new expression for the static viscosity. We found that its comparison with known experiments, at low and high concentration of ferroparticles in magnetite ferrofluids, is fair. However, comparing the predicted viscoelastic moduli with computer simulations as a function of frequency yields poor agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.