Transdermal formulations containing theophylline and salbutamol sulfate (SS) were formulated using hydroxypropylmethylcellulose. Theophylline was loaded by adsorption with the aid of the coadsorbate sodium chloride. The formulations were subjected to in vitro release studies, and the dose of salbutamol and theophylline was optimized to yield the desired flux. The films were uniform and 93 +/- 5.4 microm thick. The in vitro fluxes of theophylline and salbutamol sulfate from the formulation were 1.22 +/- 0.4 mg/h/cm2 and 13.36 +/- 1.02 microg/h/cm2, respectively. The formulation was subjected to pharmacodynamic studies in guinea pigs. The preconvulsive time (PCT) of guinea pigs increased significantly after 4 h, and the same was observed even after 24 h Pharmacokinetic studies were carried out in healthy human volunteers. Theophylline was analyzed in saliva, and salbutamol was analyzed in the blood plasma. The Tmax of the drugs was 3 h, and appreciable concentrations of the drugs above their MEC could be analyzed even after 12 h. The elimination half-life of the drugs was significantly prolonged compared to that for tablets. There were no signs of erythema or edema in the volunteers during observation for a period of 7 days.
The derived pharmacokinetic parameters (AUC and C at 600 mg dose) and simulated plasma concentration-time profiles of ulixertinib in humans were predicted with good confidence by allometric approach.
<p class="ADMETabstracttext">Ulixertinib (BVD-523) is a novel and selective reversible inhibitor of ERK1/ERK2. In xenograft studies it inhibited tumor growth in BRAF-mutant melanoma and colorectal xenografts as well as KRAS-mutant colorectal and pancreatic models. Ulixertinib is currently in Phase I clinical development for the treatment of advance solid tumors. The objective of the study is to assess the metabolic stability (in various pre-clinical and human liver microsomes/hepatocytes), permeability, protein binding, CYP inhibition, CYP induction and CYP phenotyping of ulixertinib. We have also studied the oral and intravenous pharmacokinetics of ulixertinib in mice, rats and dogs. Ulixertinib was found to be moderately to highly stable in various liver microsomes/hepatocytes tested. It is a medium permeable (2.67 x 10<sup>-6</sup> cm /sec) drug and a substrate for efflux (efflux ratio: 3.02) in Caco-2 model. Ulixertinib was highly bound to plasma proteins. CYPs involved in its limited metabolism and it is CYP inhibition IC<sub>50</sub> ranged between 10-20 µM. Post oral administration ulixertinib exhibited early T<sub>max</sub> (0.50-0.75 h) in mice and rats indicating absorption was rapid, however in dogs T<sub>max</sub> attained at 2 h. The half-life (t<sub>½</sub>) of ulixertinib by intravenous and oral routes ranged between 1.0-2.5 h across the species. Clearance and volume of distribution by intravenous route for ulixertinib were found to be 6.24 mL/min/kg and 0.56 L/kg; 1.67 mL/min/kg and 0.36 L/kg and 15.5 mL/min/kg and 1.61 L/kg in mice, rats and dogs, respectively. Absolute oral bioavailability in mice and rats was > 92 %, however in dogs it was 34 %.</p>
A simple, specific, sensitive and rapid LC-ESI-MS/MS method has been developed and validated for the quantification of 4-methylpyrazole in dog plasma using N-methylnicotinamide-d as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a simple protein precipitation. Chromatographic separation of 4-methylpyrazole and the IS was performed on a monolithic (Chromolith RP ) column using an isocratic mobile phase comprising 0.2% formic acid in water and acetonitrile (20:80, v/v) at a flow rate of 1.0 mL/min. Elution of 4-methylpyrazole and the IS occurred at ~1.60 and 1.56 min, respectively. The total chromatographic run time was 3.2 min. A linear response function was established in the concentration range of 4.96-4955 ng/mL. The intra- and inter-day accuracy and precision were in the ranges 1.81-12.9 and 3.80-11.1%, respectively. This novel method has been applied to a pharmacokinetic study in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.