Motivated by the controversy over the surface metallicity of the Sun, we present a re-analysis of the solar photospheric oxygen (O) abundance. New atomic models of O and Ni are used to perform Non-Local Thermodynamic Equilibrium (NLTE) calculations with 1D hydrostatic (MARCS) and 3D hydrodynamical (Stagger and Bifrost) models. The Bifrost 3D MHD simulations are used to quantify the influence of the chromosphere. We compare the 3D NLTE line profiles with new high-resolution, R ≈700 000, spatially-resolved spectra of the Sun obtained using the IAG FTS instrument. We find that the O i lines at 777 nm yield the abundance of log A(O) = 8.74 ± 0.03 dex, which depends on the choice of the H-impact collisional data and oscillator strengths. The forbidden [O i] line at 630 nm is less model-dependent, as it forms nearly in LTE and is only weakly sensitive to convection. However, the oscillator strength for this transition is more uncertain than for the 777 nm lines. Modelled in 3D NLTE with the Ni i blend, the 630 nm line yields an abundance of log A(O) = 8.77 ± 0.05 dex. We compare our results with previous estimates in the literature and draw a conclusion on the most likely value of the solar photospheric O abundance, which we estimate at log A(O) = 8.75 ± 0.03 dex.
Physically realistic models of stellar spectra are needed in a variety of astronomical studies, from the analysis of fundamental stellar parameters, to studies of exoplanets and stellar populations in galaxies. Here we present a new version of the widely used radiative transfer code Turbospectrum, which we update so that it is able to perform spectrum synthesis for lines of multiple chemical elements in non-local thermodynamic equilibrium (NLTE)We use the code in the analysis of metallicites and abundances of the Gaia FGK benchmark stars, using 1D MARCS atmospheric models and the averages of 3D radiation-hydrodynamics simulations of stellar surface convection. We show that the new more physically realistic models offer a better description of the observed data, and we make the program and the associated microphysics data publicly available, including grids of NLTE departure coefficients for H, O,
In this study, we focus on the impact of accretion from protoplanetary discs on the stellar evolution of AFG-type stars. We used a simplified disc model that was computed using the Two-Pop-Py code, which contains the growth and drift of dust particles in the protoplanetary disc, to model the accretion scenarios for a range of physical conditions for protoplanetary discs. Two limiting cases were combined with the evolution of stellar convective envelopes that were computed using the Garstec stellar evolution code. We find that the accretion of metal-poor (gas) or metal-rich (dust) material has a significant impact on the chemical composition of the stellar convective envelope. As a consequence, the evolutionary track of the star diverts from the standard scenario predicted by canonical stellar evolution models, which assume a constant and homogeneous chemical composition after the assembly of the star is complete. In the case of the Sun, we find a modest impact on the solar chemical composition. Indeed, the accretion of metal-poor material reduces the overall metallicity of the solar atmosphere and it is consistent, within the uncertainty, with the solar Z reported by Caffau et al. (2011, Sol. Phys., 268, 255), but our model is not consistent with the measurement by Asplund et al. (2009, ARA&A, 47, 481). Another relevant effect is the change of the position of the star in the colour-magnitude diagram. By comparing our predictions with a set of open clusters from the Gaia DR2, we show that it is possible to produce a scatter close to the TO of young clusters that could contribute to explaining the observed scatter in CMDs. Detailed measurements of metallicities and abundances in the nearby open clusters will additionally provide a stringent observational test for our proposed scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.