Gastric proton pump inhibitors (PPIs) are substituted benzimidazole prodrugs that require an acid-induced activation. Its rate depends on the reactivity of the molecule relative to the environmental pH and determines the drug’s tissue selectivity. Factors affecting the exposure of moderately acidic tissues to the activated PPI are the area under the serum concentration-time curve (AUC), serum protein binding, the partition coefficient logP and the serum elimination half-life relative to the chemical activation half-life at a critical tissue pH of about 5. These parameters have therefore been determined in a comparative fashion in the present study. The data shows that pantoprazole is less likely to undergo unwanted activation at moderately acidic targets as opposed to the parietal cell, compared to omeprazole. Actually, although 40 mg pantoprazole (steady state) gave a slightly higher serum AUC of the total parent compound than 40 mg omeprazole (10.5 vs. 7.1 µmol × h × l–1), a higher serum protein binding of pantoprazole versus omeprazole (98 vs. 96%) reversed the AUC values for the free drug in favor of a lower value for pantoprazole (0.19 vs. 0.28 µmol × h × 1–1). It is the free parent compound that equilibrates across cell membranes to be activated in acidic tissue compartments. At pH 5.1, the activation half-life of pantoprazole was 4.7 versus 1.4 h for omeprazole, the latter being in the order of the common serum elimination half-life determined in an intraindividual comparison (1.24 vs. 1.25 h). Thus, pantoprazole is eliminated faster from blood than it is activated at a pH of about 5, while omeprazole is as quickly activated at this pH as it is eliminated from blood. Biological in vitro experiments confirmed that pantoprazole displays a lower liability to interfere with unwanted biological targets. This has been demonstrated in vitro for inhibition of both renal Na+/K+-ATPase, lysosomal acidification and the production of reactive oxygen species by neutrophils.
After treatment of millions of patients suffering from gastroesophageal reflux disease (GERD) and other acid-related ailments with proton pump inhibitors, there are still unmet medical needs such as rapid and reliable pain relief, especially for nocturnal acid breakthrough. In this work, we introduce and characterize the biochemistry and pharmacology of the potassium-competitive acid blocker (P-CAB) soraprazan, a novel, reversible, and fast-acting inhibitor of gastric H,K-ATPase. Inhibitory and binding properties of soraprazan were analyzed together with its mode of action, its selectivity, and its in vivo potency. This P-CAB has an IC 50 of 0
The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate.We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.