South Africa holds more than 70% of the world's viable chromite ore reserves and produces ~46.2% of the world's high carbon ferrochrome. It was recently reported that beneficiated South African chromite ores contained significant amounts of Cr(VI). If this is true, it could have serious consequences for South African chromite mines and the local environment. Currently none of these mines make any provision for Cr(VI) leaching from their mined ores. The data obtained in this study proved that the Cr(VI) content of chromite samples is influenced by the sample preparation technique employed prior to chemical analysis, more specifically, that pulverising of chromite samples in a normal atmospheric environment resulted in Cr(VI) formation. No Cr(VI) was liberated when pulverising was conducted in an inert atmosphere. The presence of Cr(VI) in South African chromite ores therefore seems unlikely. The results also suggest that the perceived threat of Cr(VI) contamination of groundwater and surface water, originating from chromite ore stockpiles, is improbable.
Very little research on Søderberg electrodes has been published in the journal peer reviewed public domain. The main aim of this work is to characterise a Søderberg electrode that was cut off approximately 0.5 m below the contacts shoes of a submerged arc furnace. Additionally, the characterisation data can be used to verify if Søderberg electrode models accurately predict important electrode characteristics. The operational history (slipping, current, and paste levels) proved that the case study electrode was a representative specimen. The characterisation results indicated no significant electrical resistivity, degree of graphitisation (DOG), and bulk density changes from 0.7 to 2.7 m on the non-delta side (outward facing), while these characteristics changed relatively significantly on the delta side (inward facing) of the electrode. The area where the submerged arc would mostly like jump off the electrode had the lowest resistivity, as well as highest DOG and bulk density. No significant difference in porosity as a function of length below the contact shoes were observed; however, slight increases occurred near the perimeters. It was postulated that oxidation of carbon resulted in increased pore volumes near the electrode perimeter. No significant difference in compressive breaking strength was observed over the electrode area investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.