Temperature monitoring is critical in almost every type of machinery and application, especially in rotating components such as jet turbines, engines, and power plants, etc. These components involve harsh environments and where the physical connections for monitoring systems are impossible. This paper presents a resonant inductive-capacitive (L-C) circuit based wireless temperature sensor suitable for working in these harsh environments to monitor the temperature of rotating components. Design and performance analysis of the wireless temperature sensor has been conducted and the sensor prototype was successfully fabricated and calibrated up to 200ºC with sensitivity of 30 kHz/ºC. As a result it is confirmed that temperature monitoring of a rotating component can be carried out without requiring physical connection, power supplies or active elements in the sensor circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.