In this study, we present a novel, bioinspired experimental apparatus, its construction, data acquisition methodology, and validation for the study of peristaltic flows. The apparatus consists of a series of stepper motor actuators, which deflect a deformable membrane to produce peristaltic flows. We show that this apparatus design has significant advantages over previous designs that have been used to study peristaltic flows by offering a much wider range of modeling capabilities. Comparisons between the capabilities of our apparatus and previous ones show our apparatus spanning a larger range of wavelength λ, wave speed c, amplitude A, and waveform (i.e., the apparatus is not constrained to nondispersive waves or to a sinusoidal shape). This large parameter range makes the apparatus a useful tool for biomimetic experimental modeling, particularly for systems that have complex waveforms, such as peristaltic flows in perivascular vessels, arteries, the cochlea, and the urethra. We provide details on the experimental design and construction for ease of reconstruction to the reader. The apparatus capabilities are validated for a large parameter range by comparing experimental measurements to analytic results from [1] for high Reynolds number (Re > 1), and [2] for low Reynolds number (Re < 1) applications. We show that the apparatus is useful for biophysical peristaltic studies and has potential applications in other types of studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.