Magnetic systems exhibiting spin-canted states have garnered much attention recently for their promising rich exotic properties driven by the real-space spin textures and competing magnetic orders. In this study, we present the structural and magnetic properties of hexagonal 60 nm MnPtGa epitaxial thin films grown by magnetron sputtering on Al2O3(0001) single-crystalline substrates. The MnPtGa film crystallizes in the centrosymmetric P63/ mmc (No. 194) space group, showing perpendicular magnetic anisotropy along the c-axis, with a Curie temperature TC = 263 K. In addition, the MnPtGa film undergoes a spin reorientation transition at Tsr = 160 K. We investigated the MnPtGa magnetic ground states using single-crystal neutron diffraction. A structurally forbidden (001) magnetic Bragg reflection emerges below Tsr, indicating the existence of a spin-canted state, where the magnetic moments align ferromagnetically perpendicular to the basal plane, and a non-zero in-plane component exhibits an antiferromagnetic ordering along the c-axis. At 2 K, the refined magnetic moments of Mn are μz = 4.2(4) μB and μx = 1.5(3) μB, projected onto the c-axis and basal plane, respectively. Hence, we determined a 20° Mn spin canting angle off from the c-axis.
Materials hosting noncollinear magnetic ordering and sizeable spin‐orbit coupling can manifest perpendicular magnetic anisotropy and a Berry curvature‐driven intrinsic anomalous Hall effect. In this work, the structural, magnetic, and magnetotransport properties of crystalline hexagonal Heusler MnPtGa epitaxial thin films are reported. The centrosymmetric MnPtGa films (P63/mmc space group) crystallize with a preferred c‐axis (0001) crystal orientation. Along this crystallographic direction, the MnPtGa films exhibit preferential perpendicular magnetic anisotropy, below the Curie temperature TC = 263 K, with a large effective uniaxial magnetic anisotropy Keff = 0.735 MJ m−3, at 150 K. In addition, the MnPtGa system undergoes a thermally induced spin reorientation transition below Tsr = 160 K, which marks the onset of a noncollinear spin‐canted state. The anomalous Hall conductivity (AHC) of MnPtGa films exhibits a nonmonotonic behavior as a function of temperature, which changes sign at T* = 110 K. Concurrently with the reported unusual dependence of the AHC on the longitudinal conductivity in MnPtGa crystalline thin films, these findings strongly suggest an anomalous Hall effect of intrinsic origin, driven by a momentum‐space Berry curvature mechanism, as supported by first‐principle calculations.
Nonmagnetic topological semimetals that combine chirality in real and momentum spaces host unconventional multifold fermions and exhibit exotic electronic and optical properties endowed by their topologically nontrivial electronic band structure. Although the synthesis of nonmagnetic chiral single crystals with a noncentrosymmetric cubic B20 structure is well established, their heteroepitaxial growth in crystalline thin films remains a notable challenge. In this study, we present the structural, magnetic, and electrical magnetotransport properties of 24- and 51-nm-thick films of a B20-RhSi stoichiometric compound grown by magnetron sputtering. RhSi crystalline thin films on Si (111) single-crystal substrates exhibit a preferred (111) orientation with twin domains. The RhSi films display a nonmagnetic ground state, and their electrical resistivity demonstrates a clear and nonsaturating metallic behavior from 300 to 5 K. Magnetotransport measurements reveal that hole-type carriers dominate the Hall response with multiband contributions to electronic transport in the system. The good agreement with the Bloch-Grüneisen model and our first-principles calculations confirms that temperature-dependent electrical resistivity is governed by electron-phonon scattering. The ability to grow textured-epitaxial thin films of nonmagnetic B20 chiral topological semimetals is an important step toward accessing and controlling their remarkable topological surface states for designing chiraltronic devices with novel optoelectronic or spintronic functionalities. Published by the American Physical Society 2023
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.