In the paper we investigate integrability characteristics for the dispersionless KadomtsevPetviashvili hierarchy. These characteristics include symmetries, Hamiltonian structures and conserved quantities. We give a Lax triad to construct a master symmetry and a hierarchy of non-isospectral dispersionless Kadomtsev-Petviashvili flows. These non-isospectral flows, together with the known isospectral dispersionless Kadomtsev-Petviashvili flows, form a Lie algebra, which is used to derive two sets of symmetries for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy. By means of the master symmetry, symmetries, Noether operator and conserved covariants, Hamiltonian structures are constructed for both isospectral and non-isospectral dispersionless Kadomtsev-Petviashvili hierarchies. Finally, two sets of conserved quantities and their Lie algebra are derived for the isospectral dispersionless Kadomtsev-Petviashvili hierarchy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.