[1] Analyses of global climate from measurements dating back to the nineteenth century show an 'Atlantic Multidecadal Oscillation' (AMO) as a leading large-scale pattern of multidecadal variability in surface temperature. Yet it is not possible to determine whether these fluctuations are genuinely oscillatory from the relatively short observational record alone. Using a 1400 year climate model calculation, we are able to simulate the observed pattern and amplitude of the AMO. The results imply the AMO is a genuine quasi-periodic cycle of internal climate variability persisting for many centuries, and is related to variability in the oceanic thermohaline circulation (THC). This relationship suggests we can attempt to reconstruct past THC changes, and we infer an increase in THC strength over the last 25 years. Potential predictability associated with the mode implies natural THC and AMO decreases over the next few decades independent of anthropogenic climate change. Citation: Knight, J. R.,
Exactly dated tree-ring chronologies from ENSO-sensitive regions in subtropical North America and Indonesia together register the strongest ENSO signal yet detected in tree-ring data worldwide and have been used to reconstruct the winter Southern Oscillation index (SOI) from 1706 to 1977. This reconstruction explains 53% of the variance in the instrumental winter SOI during the boreal cool season (December-February) and was verified in the time, space, and frequency domains by comparisons with independent instrumental SOI and sea surface temperature (SST) data. The large-scale SST anomaly patterns associated with ENSO in the equatorial and North Pacific during the 1879-1977 calibration period are reproduced in detail by this reconstruction. Cross-spectral analyses indicate that the reconstruction reproduces over 70% of the instrumental winter SOI variance at periods between 3.5 and 5.6 yr, and over 88% in the 4-yr frequency band. Oscillatory modes of variance identified with singular spectrum analysis at ~3.5, 4.0, and 5.8 yr in both the instrumental and reconstructed series exhibit regimelike behavior over the 272-yr reconstruction. The tree-ring estimates also suggest a statistically significant increase in the interannual variability of winter SOI, more frequent cold events, and a slightly stronger sea level pressure gradient across the equatorial Pacific from the mid-nineteenth to twentieth centuries. Some of the variability in this reconstruction must be associated with background climate influences affecting the ENSO teleconnection to subtropical North America and may not arise solely from equatorial ENSO forcing. However, there is some limited independent support for the nineteenth to twentieth century changes in tropical Pacific climate identified in this reconstruction and, if substantiated, it will have important implications to the low-frequency dynamics of ENSO.
This study focuses on the interplay between mean sea level pressure (MSLP), sea surface temperature (SST), and wind and cloudiness anomalies over the Indian Ocean in seasonal composite sequences prior to, during, and after strong, near-global El Niñ o and La Niñ a episodes. It then examines MSLP and SST anomalies in the 2-2.5-year quasi-biennial (QB) and 2.5-7-year low-frequency (LF) bands that carry the bulk of the raw ENSO signal. Finally, these fields were examined in conjunction with patterns of correlations between rainfall and joint spatiotemporal empirical orthogonal function (EOF) time series band pass filtered in the QB and LF bands. The seasonal composites indicate that the El Niñ o-1 (La Niñ a-1) pattern tends to display a more robust and coherent (weaker and less organized) structure during the evolution towards the mature stage of the event. The reverse tends to be apparent in the cessation period after the peak phase of an event, when El Niñ o events tend to collapse quite quickly. Climatic variables over the Indian Ocean Basin linked to El Niñ o and La Niñ a events show responses varying from simultaneous, to about one season's lag. In general, SSTs tend to evolve in response to changes in cloud cover and wind strength over both the north and south Indian Ocean. There are also strong indications that the ascending (descending) branch of the Walker circulation is found over the African continent (central Indian Ocean) during La Niñ a phases, and that the opposite configuration occurs in El Niñ o events. These alternations are linked to distinct warm-cool (cool-warm) patterns in the north-south SST dipole over the western Indian Ocean region during the El Niñ o (La Niñ a) events. An examination of MSLP and SST anomaly patterns in the QB and LF bands shows that signals are more consistent during El Niñ o-1 and El Niñ o sequences than they are during La Niñ a-1 and La Niñ a sequences. The QB band has a tendency to display the opposite anomaly patterns to that seen on the LF band during the early stages of event onset, and later stage of event cessation, during both El Niñ o-Southern Oscillation (ENSO) phases. El Niño events tend to be reinforced by signals on both bands up to their mature phase, but are then seen to erode rapidly, as a result of the presence of distinct La Niñ a anomalies on the QB band after their peak phase. During La Niña events, the opposite is observed during their cessation phase. Both QB and LF bands often display SST dipole anomalies that are not clearly evident in the raw composites alone. An eastern Indian Ocean SST dipole shows a tendency to occur during the onset phase of particular El Niño or La Niñ a episodes, especially during the austral autumn-winter (boreal spring-summer) and, when linked to tropical-temperate cloud bands, can influence Australian rainfall patterns. Analyses of seasonal correlations between rainfall and joint MSLP and SST EOF time series on QB and LF bands and their dynamical relationship with MSLP and SST anomalies during El Niñ o and La Niñ a events...
The development of a daily historical European-North Atlantic mean sea level pressure dataset (EMSLP) for 1850-2003 on a 5°latitude by longitude grid is described. This product was produced using 86 continental and island stations distributed over the region 25°-70°N, 70°W-50°E blended with marine data from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The EMSLP fields for 1850-80 are based purely on the land station data and ship observations. From 1881, the blended land and marine fields are combined with already available daily Northern Hemisphere fields. Complete coverage is obtained by employing reduced space optimal interpolation. Squared correlations (r 2 ) indicate that EMSLP generally captures 80%-90% of daily variability represented in an existing historical mean sea level pressure product and over 90% in modern 40-yr European Centre for Medium-Range Weather Forecasts Re-Analyses (ERA-40) over most of the region. A lack of sufficient observations over Greenland and the Middle East, however, has resulted in poorer reconstructions there. Error estimates, produced as part of the reconstruction technique, flag these as regions of low confidence. It is shown that the EMSLP daily fields and associated error estimates provide a unique opportunity to examine the circulation patterns associated with extreme events across the European-North Atlantic region, such as the 2003 heat wave, in the context of historical events.
This study focuses on the interplay between mean sea level pressure (MSLP), sea surface temperature (SST), and wind and cloudiness anomalies over the Indian Ocean in seasonal composite sequences prior to, during, and after strong, near-global El Niñ o and La Niñ a episodes. It then examines MSLP and SST anomalies in the 2 -2.5-year quasi-biennial (QB) and 2.5-7-year low-frequency (LF) bands that carry the bulk of the raw ENSO signal. Finally, these fields were examined in conjunction with patterns of correlations between rainfall and joint spatiotemporal empirical orthogonal function (EOF) time series band pass filtered in the QB and LF bands.The seasonal composites indicate that the El Niñ o-1 (La Niñ a-1) pattern tends to display a more robust and coherent (weaker and less organized) structure during the evolution towards the mature stage of the event. The reverse tends to be apparent in the cessation period after the peak phase of an event, when El Niñ o events tend to collapse quite quickly.Climatic variables over the Indian Ocean Basin linked to El Niñ o and La Niñ a events show responses varying from simultaneous, to about one season's lag. In general, SSTs tend to evolve in response to changes in cloud cover and wind strength over both the north and south Indian Ocean. There are also strong indications that the ascending (descending) branch of the Walker circulation is found over the African continent (central Indian Ocean) during La Niñ a phases, and that the opposite configuration occurs in El Niñ o events. These alternations are linked to distinct warm -cool (cool-warm) patterns in the north-south SST dipole over the western Indian Ocean region during the El Niñ o (La Niñ a) events.An examination of MSLP and SST anomaly patterns in the QB and LF bands shows that signals are more consistent during El Niñ o-1 and El Niñ o sequences than they are during La Niñ a-1 and La Niñ a sequences. The QB band has a tendency to display the opposite anomaly patterns to that seen on the LF band during the early stages of event onset, and later stage of event cessation, during both El Niñ o -Southern Oscillation (ENSO) phases. El Niño events tend to be reinforced by signals on both bands up to their mature phase, but are then seen to erode rapidly, as a result of the presence of distinct La Niñ a anomalies on the QB band after their peak phase. During La Niña events, the opposite is observed during their cessation phase.Both QB and LF bands often display SST dipole anomalies that are not clearly evident in the raw composites alone. An eastern Indian Ocean SST dipole shows a tendency to occur during the onset phase of particular El Niño or La Niñ a episodes, especially during the austral autumn -winter (boreal spring -summer) and, when linked to tropical-temperate cloud bands, can influence Australian rainfall patterns.Analyses of seasonal correlations between rainfall and joint MSLP and SST EOF time series on QB and LF bands and their dynamical relationship with MSLP and SST anomalies during El Niñ o and La Niñ ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.