Mesa-structuring of InGaAs/InAlAs photoconductive layers is performed employing a chemical assisted ion beam etching (CAIBE) process. Terahertz photoconductive antennas for 1.5 microm operation are fabricated and evaluated in a time domain spectrometer. Order-of-magnitude improvements versus planar antennas are demonstrated in terms of emitter power, dark current and receiver sensitivity.
Many time-domain terahertz applications require systems with high bandwidth, high signal-to-noise ratio and fast measurement speed. In this paper we present a terahertz time-domain spectrometer based on 1550 nm fiber laser technology and InGaAs photoconductive switches. The delay stage offers both a high scanning speed of up to 60 traces / s and a flexible adjustment of the measurement range from 15 ps -200 ps. Owing to a precise reconstruction of the time axis, the system achieves a high dynamic range: a single pulse trace of 50 ps is acquired in only 44 ms, and transformed into a spectrum with a peak dynamic range of 60 dB. With 1000 averages, the dynamic range increases to 90 dB and the measurement time still remains well below one minute. We demonstrate the suitability of the system for spectroscopic measurements and terahertz imaging.
We present first results on photoconductive THz emitters for 1.55µm excitation. The emitters are based on MBE grown In0.53Ga0.47As/In0.52Al0.48As multilayer heterostructures (MLHS) with high carrier mobility. The high mobility is achieved by spatial separation of photoconductive and trapping regions. Photoconductive antennas made of these MLHS are evaluated as THz emitters in a THz time domain spectrometer (THz TDS). The high carrier mobility and effective absorption significantly increases the optical-to-THz conversion efficiency with THz bandwidth in excess of 3 THz.
We present results on optimized growth temperatures and layer structure design of high mobility photoconductive Terahertz (THz) emitters based on molecular beam epitaxy grown In0.53Ga0.47As/In0.52Al0.48As multilayer heterostructures (MLHS). The photoconductive antennas made of these MLHS are evaluated as THz emitters in a THz time domain spectrometer and with a Golay cell. We measured a THz bandwidth in excess of 4 THz and average THz powers of up to 64 μW corresponding to an optical power-to-THz power conversion efficiency of up to 2 × 10−3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.