Positron emission tomography (PET) images usually suffer from poor signal-to-noise ratio (SNR) due to the high level of noise and low spatial resolution, which adversely affect its performance for lesion detection and quantification. The complementary information present in high-resolution anatomical images from multi-modality imaging systems could potentially be used to improve the ability to detect and/or quantify lesions. However, previous methods that use anatomical priors usually require matched organ/lesion boundaries. In this study, we investigated the use of anatomical information to suppress noise in PET images while preserving both quantitative accuracy and the amplitude of prominent signals that do not have corresponding boundaries on computerized tomography (CT). The proposed approach was realized through a postreconstruction filter based on the nonlocal means (NLM) filter, which reduces noise by computing the weighted average of voxels based on the similarity measurement between patches of voxels within the image. Anatomical knowledge obtained from CT was incorporated to constrain the similarity measurement within a subset of voxels. In contrast to other methods that use anatomical priors, the actual number of neighboring voxels and weights used for smoothing were determined from a robust measurement on PET images within the subset. Thus, the proposed approach can be robust to signal mismatches between PET and CT. A 3-D search scheme was also investigated for the volumetric PET/CT data. The proposed anatomically guided median nonlocal means filter (AMNLM) was first evaluated using a computer phantom and a physical phantom to simulate realistic but challenging situations where small lesions are located in homogeneous regions, which can be detected on PET but not on CT. The proposed method was further assessed with a clinical study of a patient with lung lesions. The performance of the proposed method was compared to Gaussian, edge-preserving bilateral and NLM filters, as well as median nonlocal means (MNLM) filtering without an anatomical prior. The proposed AMNLM method yielded improved lesion contrast and SNR compared with other methods even with imperfect anatomical knowledge, such as missing lesion boundaries and mismatched organ boundaries.
Respiratory motion degrades the detection and quantification capabilities of PET/CT imaging. Moreover, mismatch between a fast helical CT image and a time-averaged PET image due to respiratory motion results in additional attenuation correction artifacts and inaccurate localization. Current motion compensation approaches typically have 3 limitations: the mismatch among respiration-gated PET images and the CT attenuation correction (CTAC) map can introduce artifacts in the gated PET reconstructions that can subsequently affect the accuracy of the motion estimation; sinogram-based correction approaches do not correct for intragate motion due to intracycle and intercycle breathing variations; and the mismatch between the PET motion compensation reference gate and the CT image can cause an additional CT-mismatch artifact. In this study, we established a motion correction framework to address these limitations. In the proposed framework, the combined emission-transmission reconstruction algorithm was used for phase-matched gated PET reconstructions to facilitate the motion model building. An event-by-event nonrigid respiratory motion compensation method with correlations between internal organ motion and external respiratory signals was used to correct both intracycle and intercycle breathing variations. The PET reference gate was automatically determined by a newly proposed CT-matching algorithm. We applied the new framework to 13 human datasets with 3 different radiotracers and 323 lesions and compared its performance with CTAC and non-attenuation correction (NAC) approaches. Validation using 4-dimensional CT was performed for one lung cancer dataset. For the 10 F-FDG studies, the proposed method outperformed ( < 0.006) both the CTAC and the NAC methods in terms of region-of-interest-based SUV, SUV, and SUV ratio improvements over no motion correction (SUV: 19.9% vs. 14.0% vs. 13.2%; SUV: 15.5% vs. 10.8% vs. 10.6%; SUV ratio: 24.1% vs. 17.6% vs. 16.2%, for the proposed, CTAC, and NAC methods, respectively). The proposed method increased SUV ratios over no motion correction for 94.4% of lesions, compared with 84.8% and 86.4% using the CTAC and NAC methods, respectively. For the 2 F-fluoropropyl-(+)-dihydrotetrabenazine studies, the proposed method reduced the CT-mismatch artifacts in the lower lung where the CTAC approach failed and maintained the quantification accuracy of bone marrow where the NAC approach failed. For theF-FMISO study, the proposed method outperformed both the CTAC and the NAC methods in terms of motion estimation accuracy at 2 lung lesion locations. The proposed PET/CT respiratory event-by-event motion-correction framework with motion information derived from matched attenuation-corrected PET data provides image quality superior to that of the CTAC and NAC methods for multiple tracers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.