LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR's new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of ∼600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of ∼1.3 , with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 Å, using two overlapping setups (V500 and V1200), with different resolutions: R ∼ 850 and R ∼ 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3σ limiting surface brightness depth of ∼23.0 mag/arcsec 2 for the V500 grating data (∼22.8 mag/arcsec 2 for V1200); (ii) about ∼70% of the covered field-of-view is above this 3σ limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within ∼8% with respect to SDSS; (v) the measured spectral resolution is ∼85 km s −1 for V1200 (∼150 km s −1 for V500); (vi) the estimated accuracy of the wavelength calibration is ∼5 km s −1 for the V1200 data (∼10 km s −1 for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of...
This article reviews observations and models of the diffuse ionized gas that permeates the disk and halo of our Galaxy and others. It was inspired by a series of invited talks presented during an afternoon scientific session of the 65th birthday celebration for Professor Carl Heiles held at Arecibo Observatory in August 2004. This review is in recognition of Carl's long standing interest in and advocacy for studies of the ionized as well as the neutral components of the interstellar medium.Comment: 29 pages, 19 figures; accepted by Reviews of Modern Physic
The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120–168 MHz survey of the entire northern sky for which observations are now 20% complete. We present our first full-quality public data release. For this data release 424 square degrees, or 2% of the eventual coverage, in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00′00″ to 57°00′00″) were mapped using a fully automated direction-dependent calibration and imaging pipeline that we developed. A total of 325 694 sources are detected with a signal of at least five times the noise, and the source density is a factor of ∼10 higher than the most sensitive existing very wide-area radio-continuum surveys. The median sensitivity is S144 MHz = 71 μJy beam−1 and the point-source completeness is 90% at an integrated flux density of 0.45 mJy. The resolution of the images is 6″ and the positional accuracy is within 0.2″. This data release consists of a catalogue containing location, flux, and shape estimates together with 58 mosaic images that cover the catalogued area. In this paper we provide an overview of the data release with a focus on the processing of the LOFAR data and the characteristics of the resulting images. In two accompanying papers we provide the radio source associations and deblending and, where possible, the optical identifications of the radio sources together with the photometric redshifts and properties of the host galaxies. These data release papers are published together with a further ∼20 articles that highlight the scientific potential of LoTSS.
Aims. An interesting question of contemporary cosmology concerns the relation between the spatial distribution of galaxies and dark matter, which is thought to be the driving force behind the structure formation in the Universe. In this paper, we measure this relation, parameterised by the linear stochastic bias parameters, for a range of spatial scales using the data of the Garching-Bonn Deep Survey (GaBoDS). Methods. The weak gravitational lensing effect is used to infer matter density fluctuations within the field-of-view of the survey fields. This information is employed for a statistical comparison of the galaxy distribution to the total matter distribution. The result of this comparison is expressed by means of the linear bias factor b, the ratio of density fluctuations, and the correlation factor r between density fluctuations. The total galaxy sample is divided into three sub-samples using R-band magnitudes and the weak lensing analysis is applied separately for each sub-sample. Together with the photometric redshifts from the related COMBO-17 survey we estimate the typical mean redshifts of these samples withz = 0.35, 0.47, 0.61, respectively. Results. Using a flat ΛCDM model with Ω m = 0.3, Ω Λ = 0.7 as fiducial cosmology, we obtain values for the galaxy bias on scales between 1 ≤ θ ap ≤ 20 . At 10 , the median redshifts of the samples correspond roughly to a typical comoving scale of 3, 5, 7 h −1 Mpc with h = 0.7, respectively. We find evidence for a scale-dependence of b. Averaging the measurements of the bias over the range 2 ≤ θ ap ≤ 19 yieldsb = 0.81 ± 0.11, 0.79 ± 0.11, 0.81 ± 0.11 (1σ), respectively. Galaxies are thus less clustered than the total matter on that particular range of scales (anti-biased). As for the correlation factor r we see no scale-dependence within the statistical uncertainties; the average over the same range isr = 0.61 ± 0.16, 0.64 ± 0.18, 0.58 ± 0.19 (1σ), respectively. This implies a possible decorrelation between galaxy and dark matter distribution. An evolution of galaxy bias with redshift is not found, the upper limits are: ∆b 0.2 and ∆r 0.4(1σ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.