Background Plasmacytoid dendritic cells have been implicated in the pathogenesis of systemic sclerosis through mechanisms beyond the previously suggested production of type I interferon. Methods We isolated plasmacytoid dendritic cells from healthy persons and from patients with systemic sclerosis who had distinct clinical phenotypes. We then performed proteome-wide analysis and validated these observations in five large cohorts of patients with systemic sclerosis. Next, we compared the results with those in patients with systemic lupus erythematosus, ankylosing spondylitis, and hepatic fibrosis. We correlated plasma levels of CXCL4 protein with features of systemic sclerosis and studied the direct effects of CXCL4 in vitro and in vivo. Results Proteome-wide analysis and validation showed that CXCL4 is the predominant protein secreted by plasmacytoid dendritic cells in systemic sclerosis, both in circulation and in skin. The mean (±SD) level of CXCL4 in patients with systemic sclerosis was 25,624±2652 pg per milliliter, which was significantly higher than the level in controls (92.5±77.9 pg per milliliter) and than the level in patients with systemic lupus erythematosus (1346±1011 pg per milliliter), ankylosing spondylitis (1368±1162 pg per milliliter), or liver fibrosis (1668±1263 pg per milliliter). CXCL4 levels correlated with skin and lung fibrosis and with pulmonary arterial hypertension. Among chemokines, only CXCL4 predicted the risk and progression of systemic sclerosis. In vitro, CXCL4 downregulated expression of transcription factor FLI1, induced markers of endothelial-cell activation, and potentiated responses of toll-like receptors. In vivo, CXCL4 induced the influx of inflammatory cells and skin transcriptome changes, as in systemic sclerosis. Conclusions Levels of CXCL4 were elevated in patients with systemic sclerosis and correlated with the presence and progression of complications, such as lung fibrosis and pulmonary arterial hypertension. (Funded by the Dutch Arthritis Association and others.)
With 46 subunits, human mitochondrial complex I is the largest enzyme of the oxidative phosphorylation system. We have studied the assembly of complex I in cultured human cells. This will provide essential information about the nature of complex I deficiencies and will enhance our understanding of mitochondrial disease mechanisms. We have found that 143B206 rho zero cells, not containing mitochondrial DNA, are still able to form complex I subcomplexes. To further address the nature of these subcomplexes, we depleted 143B osteosarcoma cells of complex I by inhibiting mitochondrial protein translation with doxycycline. After removing this drug, complex I formation resumes and assembly intermediates were observed by two-dimensional blue native electrophoresis. Analysis of the observed subcomplexes indicates that assembly of human complex I is a semi-sequential process in which different preassembled subcomplexes are joined to form a fully assembled complex. The membrane part of the complex is formed in distinct steps. The B17 subunit is part of a subcomplex to which ND1, ND6 and PSST are subsequently added. This is bound to a hydrophilic subcomplex containing the 30 and 49 kDa subunits, to which a subcomplex including the 39 kDa subunit is incorporated, and later on the 18 and 24 kDa subunits. At a later stage more subunits, including the 15 kDa, are added and holo-complex I is formed. Our results suggest that human complex I assembly resembles that of Neurospora crassa, in which a membrane arm is formed and assembled to a preformed peripheral arm, and support ideas about modular evolution.
Complex I (NADH:ubiquinone oxidoreductase) is the largest multiprotein enzyme of the oxidative phosphorylation system. Its assembly in human cells is poorly understood and no proteins assisting this process have yet been described. A good candidate is NDUFAF1, the human homologue of Neurospora crassa complex I chaperone CIA30. Here, we demonstrate that NDUFAF1 is a mitochondrial protein that is involved in the complex I assembly process. Modulating the intramitochondrial amount of NDUFAF1 by knocking down its expression using RNA interference leads to a reduced amount and activity of complex I. NDUFAF1 is associated to two complexes of 600 and 700 kDa in size of which the relative distribution is altered in two complex I deficient patients. Analysis of NDUFAF1 expression in a conditional complex I assembly system shows that the 700 kDa complex may represent a key step in the complex I assembly process. Based on these data, we propose that NDUFAF1 is an important protein for the assembly/stability of complex I.
Monocytes activated by lipopolysaccharide (LPS) and interferon gamma (IFN gamma) rapidly secrete a number of monokines with different functional properties. Interleukin–4 (IL–4), a T-cell derived cytokine, has been shown to reduce the production of monokines with cytostatic activity for tumor cells, chemotactic activity for monocytes, and factors that stimulate thymocyte proliferation. This latter activity is mediated by a number of monokines like IL–1, tumor necrosis factor alpha (TNF alpha), and IL–6. To elucidate which cytokines produced by monocytes are controlled by IL–4, we tested the effect of IL–4 on the secretion of IL–1 alpha, IL–1 beta, TNF alpha, and IL–6 induced by LPS or IFN gamma. IL–4 was found to inhibit the secretion of IL–1 beta and TNF alpha by activated monocytes almost 100%. The secretion of IL–6 was found to be reduced 70% to 85% in the presence of IL–4, whereas there was no effect on the secretion of IL–1 alpha (IL–1 alpha is mainly cell- associated). Time-course experiments demonstrate that IL–4 reduces the secretion of monokines for a prolonged period of time (greater than 40 hours). The reduced secretion of IL–1 beta and TNF alpha was specifically induced by IL–4 because anti-IL–4 antiserum completely restored normal monokine production. These data suggest that IL–4 plays a role in the regulation of immune responses by reducing the production of functionally important monokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.