The design, construction, and characterization of a miniature array of 16 rods forming nine quadrupole mass analyzers for residual gas analysis are presented. The novel design takes advantage of the reduction of the dimensions and hence the mean free path to broaden the dynamic range by extending the operating pressure range up to 10 mTorr at the high end while maintaining the low-end sensitivity and mass resolution. The small size, low weight, low power consumption, and low cost of this mass analyzer enable many new applications such as in situ process control in high pressure processes. Applications which take advantage of the capability of operating the source pressure two orders of magnitude higher than conventional devices such as high-pressure contaminant monitoring are discussed. Data on high-pressure effects on the ionizer lifetime in various atmospheres and nonlinearities of the signal are presented and correlated with theoretical analysis. Ray tracing simulations and Monte Carlo statistical calculations are used to provide an understanding of the sensitivity reduction at pressures substantially higher than 10 mTorr. These calculations take into account the ion charge density in the source and the dissociation, charge exchange, and energy loss by the ions when colliding with residual molecules along the length of the rods.
Pressing needs for miniature mass spectrometers became apparent during the last decade in process monitoring and control, space exploration, and environmental screening. Besides the small footprint, common requirements include low cost, low power consumption, field portability, reliability, autonomy, and ease-of-use. Design concepts and construction technologies of miniaturized quadrupole sensors were guided by cost reduction requirements without sacrifice of performance. The first miniature and complete quadrupole mass spectrometer system was introduced as the Micropole sensor. The concept featured a novel technique to assemble and operate multiple miniature quadrupoles in parallel. The short analyzer length offers a significant advantage by enabling direct mass filtering at pressures up in the 10(-2) torr range. High voltages at higher frequencies (10-20 MHz) are required for acceptable mass resolving powers. Additional trade-offs were uncovered in miniature sensors leading to designs optimized for each class of applications. Real time ray tracing of ions injected and filtered in the quadrupole field is used early in the design stage to predict the performance and reliability of the device.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions by utilizing the mobility differences of ions at high and low fields. The shape of the waveform is one of the essential features affecting the resolution, transmission, and separation of FAIMS. Due to practical circuitry advantages, sinusoidal asymmetric waveforms are typically used in FAIMS, whereas theoretical studies indicate that square asymmetric waveforms improve ion separation, resolution, and sensitivity. Results from FAIMS using square and sinusoidal waveforms are presented, and effects of the waveforms on ion separation are discussed. A FAIMS system interfaced with a quadrupole ion trap mass spectrometer was used in this study. FAIMS spectra were generated by scanning the compensation voltage (CV) while operating the mass spectrometer in total ion mode. The identification of ions was accomplished through mass spectra acquired at fixed values of ions' CVs. Square waveform evaluation was done by acquiring data at three frequencies and six duty cycles of the square waveform generator. The performance of FAIMS using square and sinusoidal waveforms at 250, 333, and 500 kHz frequencies was compared, and trends were identified. For all frequencies, the best response of FAIMS was achieved at the lower amplitudes and under the lower duty cycles of the square waveform generator. The separation of FAIMS was better at the higher frequencies. These results demonstrate the potential to incorporate square-wave FAIMS into the design of a miniature device for detection of explosives in the field. SIMION version 8.0, the ion trajectory modeling program, was utilized to optimize the performance of the miniature FAIMS cell and to validate experimental results.
This paper includes computer simulations based on ray tracing to aid in the design of miniature quadrupoles. These quadrupoles are then assembled in a matrix-like pattern to operate in parallel. The tradeoffs between sensitivity and resolution for different mechanical and electrical configurations are examined using real-time trajectories of ions. The dependence of resolution versus sensitivity is computed and compared with experimental results. The pressure dependence of the sensitivity is simulated near the upper limit (mtorr range) of the operating pressure. Space charge effects at the inlet of the mass filter are evaluated to properly design electrode apertures and spacing. Using the results of ray tracing, miniature quadrupole arrays were designed and constructed. Performance parameters were derived from recorded spectra and compared with the computations. Since they are able to operate at higher pressures, these sensor-type devices are used as residual gas analyzers (RGAs) and as process gas analyzers (PGAs) in many semiconductor applications. Networking multiple sensors to monitor the state of the semiconductor manufacturing tool and the wafers at different stages of the process enables real-time, wafer-to-wafer control using preset fault detection schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.