A finite volume numerical technique has been used to model the evaporation of an n-heptane droplet with an initial Reynolds number of 100 in air at 800 K, 1 atm. The effects of variable thermophysical properties, liquid phase motion and heating, and transient variations in droplet size and velocity are included in the analysis. With appropriate corrections for the effects of variable properties and liquid phase heating, quasi-steady correlations are shown to predict accurately the transient histories of the drag coefficient and Nusselt and Sherwood numbers. For the case investigated here, the transient effects of importance were the variation in droplet velocity, the decline in the liquid phase velocities, and the rise in the droplet surface and volume average temperatures. In spite of the transient rise in the droplet temperature, the nature of the liquid phase heating, as characterised by the liquid Nusselt number, was found to remain constant during most of the droplet lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.