Measurements of the lead isotopic composition and the uranium, thorium, and lead concentrations in meteorites were made in order to obtain more precise radiometric ages of these members of the solar system. The newly determined value of the lead isotopic composition of Canyon Diablo troilite is as follows: (206)Pb/(204)Pb = 9.307, (207)Pb/(2O4)Pb = 10.294, and (208)Pb/(204)Pb = 29.476. The leads of Angra dos Reis, Sioux County, and Nuevo Laredo achondrites are very radiogenic, the (206)Pb/(204)Pb values are about 200, and the uranium-thorium-lead systems are nearly concordant. The ages of the meteorites as calculated from a single-stage (207)Pb/(206)Pb isochron based on the newly determined primordial lead value and the newly reported (235)U and (838)U decay constants, are 4.528 x 10(9) years for Sioux County and Nuevo Laredo and 4.555 x 10(9) years for Angra dos Reis. When calculated with the uranium decay constants used by Patterson, these ages are 4.593 x 10(9) years and 4.620 x 10(9) years, respectively, and are therefore 40 to 70 x 10(6) years older than the 4.55 x 10(9) years age Patterson reported. The age difference of 27 x 10(6) years between Angra dos Reis and the other two meteorites is compatible with the difference between the initial (87)Sr/(86)Sr ratio of Angra dos Reis and that of seven basaltic achondrites observed by Papanastassiou and Wasserburg. The time difference is also comparable to that determined by (129)1-(129)Xe chronology. The ages of ordinary chondrites (H5 and L6) range from 4.52 to 4.57 x 10(9) years, and, here too, time differences in the formation of the parent bodies or later metamorphic events are indicated. Carbonaceous chondrites(C2 and C3) appear to contain younger lead components.
Rare‐earth element (REE) analyses of 68 rock and mineral separate samples from the Samail ophiolite clearly differentiate the various units of the ophiolite suite and indicate that the crustal suite is cogenetic, produced by crystal fractionation of basaltic magma in a spreading ridge magma chamber. Mantle peridotites are residual in rare‐earth character, but cannot be clearly related to the overlying mafic rocks. Chromian spinel is probably insignificant in its effect on REE distribution during partial melting and crystal fractionation, as indicated by the low REE concentrations in chromitite from the Samail. Layered gabbro REE patterns are dominated by cumulus clinopyroxene and plagioclase. Large positive Eu anomalies demonstrate plagioclase accumulation. Modal mixing (mass balance) calculations reveal that most of these adcumulus gabbros have REE patterns that are the products of the REE concentrations of their constituent cumulus phases in the observed modal proportions; hence no appreciable REE‐rich mesostasis is present. Such calculations also allow the prediction of mineral REE concentrations not actually determined by mineral separate analyses. Several high‐level (noncumulus?) gabbros yield patterns with positive Eu anomalies suggesting relative plagioclase accumulation, probably due to liquid fractionation (filter pressing). Dike complex REE patterns show light rare‐earth element depletions and are similar to, but not necessarily diagnostic of, midocean ridge basalt. They cluster at similar abundance levels; however, the absolute variation in abundance is large, indicative of modification by crystal fractionation. Calculations using partition coefficient data indicate that many dikes represent liquids that could have existed in equilibrium with cumulus minerals of the plutonic suite. Mineral separate REE data from layered cumulus gabbro of the Khafifah stratigraphic section reveal cryptic variation trends that are correlated with major element variation, in support of a long‐lived (periodically replenished) magma chamber model (Pallister and Hopson, 1978, 1979, 1981). (Cryptic variation as used herein is defined as the change in mineral composition with respect to stratigraphic position.) The REE cryptic variation shows both direct and inverse correlation to major element variation, indicating that magmatic replenishment was complicated by changes in parent melt REE abundance. A crystal fractionation origin for the small plagiogranite bodies of the Ibra area is favored by REE modeling, although larger bodies (Dasir) may also be related to magmatic inclusion of roofrock with diabase level REE distribution (Gregory and Taylor, 1979).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.