Commercial Al-2024 (T3) alloy was friction stir welded at various heat index (HI) values using bead on plate approach. Quantitative analysis using electron microscopy and differential scanning calorimetry (DSC) revealed a complex variation in the precipitation evolution of Guinier-Preston-Bagaryatskii (GPB) zone and Al 2 CuMg (S phase) precipitates in nugget and heat affected zone (HAZ). Differential scanning calorimetry data also suggested formation energy of GPB zone equal to 2236 J g 21 . Tensile properties attained a maximum for HI values close to 3?94 in the nugget region, which was attributed to corresponding minimisation of the volume fraction of coarse S phase to the profit of GPB zone. The precipitation of fine S phase precipitates resulted in higher tensile properties in HAZ as compared to those in nugget for all HI values. Experimental data were used to determine major strengthening mechanisms by using constitutive relationships.
The microstructural evolution and resultant mechanical properties during the friction stir welding (FSW) of precipitation strengthened aluminium alloys depend on initial temper as well as FSW process parameters. Al-2024 alloy under two different initial tempers, T3 and T8, was used in the present study. FSW bead-on-plate runs were performed at different values of process parameters (tool rotation rate and tool traverse speed). Microstructure and mechanical properties of the nugget region and heat affected zone (HAZ) were evaluated. Differential scanning calorimetry (DSC) revealed that in the nugget region, presence of Guinier-Preston-Bagaryatskii (GPB) zone results from the partial dissolution of Al 2 CuMg phase. The microstructure and tensile properties were found to be independent of the initial temper of the material in the nugget region. In the HAZ region, tensile properties increased at higher heat index values for T3 condition, and decreased monotonically for T8 condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.