Abstract. Reliable reference profiles and estimates of variability are a necessity for a variety of processes relating to ENVISAT including the development of key aspects and inputs for the operational processor for the Michelson Interferometer for Passive Atmospheric Sounding. MIPAS reference atmospheres have therefore been produced in two forms, namely standard atmospheres for modelling and error analysis for typical atmospheric situations and the IG2 seasonal climatologies for initial guess profiles used as part of the operational processing. The reference states cover 36 species on a common altitude, pressure, and temperature grid from 0 to 120 km, and include both means and estimates of variability (maximum, minimum and one sigma values). This paper describes V3.1 of the standard atmospheres and V4.0 of the IG2 atmospheres which are the current versions of the reference atmospheres. Particular attention is paid to the MIPAS operational geophysical products (pressure/temperature, H2O, O3, CH4, N2O, HNO3 and NO2) and to CO2 whose mixing ratio is required for the retrieval of pressure and temperature. A dynamic representation of CO2 is presented which shows the presence of CO2 gradients in the troposphere and the lower stratosphere. Since these atmospheres have been produced independently of MIPAS data, it is also possible to compare the data to the MIPAS operational products and derive valuable information on both the reference atmospheres and on MIPAS data products themselves. This process has been performed for V4.61/V4.62 data from the year 2003 as part of the MIPAS validation activity. It is demonstrated that the agreement between the MIPAS mean data and the reference atmospheres is very good in mid-latitudes and the tropics, verifying these data to first order. There is also reasonable agreement in standard deviations between the IG2 atmospheres and the corresponding sigmas calculated from the MIPAS data. Knowledge of tropospheric concentrations of CH4 and N2O is used to examine the accuracy of the MIPAS data and their susceptibility to cloud effects. It is shown that for the highest accuracy, MIPAS data should be filtered with cloud index values of 2.5 for N2O and 3.5 for CH4. Once such filtering has been performed, the MIPAS data for these species appear to be accurate to within 10% in the upper troposphere. The use of cloud index data in combination with MIPAS data is recommended for studies of the polar winter stratosphere and the upper troposphere/lower stratosphere.
Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006 -September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51' N, 24° 52' W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations.Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO 2 and CH 4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O 3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in European air masses that contain relatively less well-aged air. In air heavily influenced by Saharan dust the O 3 /CO ratio was as low as 0.13, possibly indicating O 3 uptake to dust. Nitrogen oxides (NO x and NO y ) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO 2 of 9 × 10 6 molecule cm -3 and 6 × 10 8 molecule cm -3 , respectively. After the primary photolysis source, the chemistry of IO and BrO, the abundance of HCHO, and aerosol uptake are important for the HO x budget in this region.3
The first nitryl chloride (ClNO 2 ) measurements in the UK were made during the summer 2012 ClearfLo campaign with a chemical ionization mass spectrometer, utilizing an I À ionization scheme.Concentrations of ClNO 2 exceeded detectable limits (11 ppt) every night with a maximum concentration of 724 ppt. A diurnal profile of ClNO 2 peaking between 4 and 5 A.M., decreasing directly after sunrise, was observed. Concentrations of ClNO 2 above the detection limit are generally observed between 8 P.M. and 11 A.M. Different ratios of the production of ClNO 2 :N 2 O 5 were observed throughout with both positive and negative correlations between the two species being reported. The photolysis of ClNO 2 and a box model utilizing the Master Chemical Mechanism modified to include chlorine chemistry was used to calculate Cl atom concentrations. Simultaneous measurements of hydroxyl radicals (OH) using low pressure laser-induced fluorescence and ozone enabled the relative importance of the oxidation of three groups of measured VOCs (alkanes, alkenes, and alkynes) by OH radicals, Cl atoms, and O 3 to be compared. For the day with the maximum calculated Cl atom concentration, Cl atoms in the early morning were the dominant oxidant for alkanes and, over the entire day, contributed 15%, 3%, and 26% toward the oxidation of alkanes, alkenes, and alkynes, respectively.
Abstract. This paper presents a summary of the measurements made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe) coastal study in Roscoff on the North West coast of France throughout September 2006. It was clearly demonstrated that iodinemediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I 2 , by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I 2 . The heterogeneous macroalgal I 2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques.
[1] In this paper we compare retrieved tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO 2 ) from the Ozone Monitoring Instrument (OMI) to coincident tropospheric columns retrieved from the Concurrent Multiaxis Differential Optical Absorption Spectroscopy (CMAX-DOAS) instrument, installed at the University of Leicester (52.38°N, 1.08°W), and in situ near-surface measurements from chemiluminescence detectors. The results show that tropospheric NO 2 columns retrieved from CMAX-DOAS and OMI correlate well (r = 0.64) when cloud clearing has been applied, and only those pixels that sample at least 90% of the Leicester area were included in the analyses. The correlation of OMI tropospheric VCDs with near-surface measurements for cloud-free days in 2005 and 2006 initially showed a strong positive bias in the near-surface NO 2 measurements and scattered points. This was interpreted as being due to the satellite footprint of OMI sampling the NO 2 sources from the surrounding area of Leicester as well as emissions from the city. A field-of-view (FOV) weighted estimate for the OMI-equivalent urban NO 2 was calculated for each coincidence by including background concentrations from a nearby in situ monitor, situated in a rural area. The subsequent agreement between the OMI tropospheric VCDs and FOV weighted near-surface measurements is very good for spring (r = 0.83) and summer (r = 0.64) months. Finally, seasonal and weekly cycles of NO 2 are produced which show that OMI may be underestimating the amount of NO 2 during the winter months. However, all sets of data show expected weekly cycles, with lower values on a Sunday.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.