We demonstrate a novel 10.8 μm superlattice infrared detector based on doped quantum wells of GaAs/AlGaAs. Intersubband resonance radiation excites an electron from the ground state into the first excited state, where it rapidly tunnels out producing a photocurrent. We achieve a narrow bandwidth (10%) photosensitivity with a responsivity of 0.52 A/W and an estimated speed of 30 ps.
One-dimensional microcavities are optical resonators with coplanar reflectors separated by a distance on the order of the optical wavelength. Such structures quantize the energy of photons propagating along the optical axis of the cavity and thereby strongly modify the spontaneous emission properties of a photon-emitting medium inside a microcavity. This report concerns semiconductor light-emitting diodes with the photon-emitting active region of the light-emitting diodes placed inside a microcavity. These devices are shown to have strongly modified emission properties including experimental emission efficiencies that are higher by more than a factor of 5 and theoretical emission efficiencies that are higher by more than a factor of 10 than the emission efficiencies in conventional light-emitting diodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.