We demonstrate extraordinary photoconductive behavior in two-dimensional (2D) crystalline indium selenide (In2Se3) nanosheets. Photocurrent measurements reveal that semiconducting In2Se3 nanosheets have an extremely high response to visible light, exhibiting a photoresponsivity of 3.95 × 10(2) A·W(-1) at 300 nm with an external quantum efficiency greater than 1.63 × 10(5) % at 5 V bias. The key figures-of-merit exceed that of graphene and other 2D material-based photodetectors reported to date. In addition, the photodetector has a fast response time of 1.8 × 10(-2) s and a specific detectivity of 2.26 × 10(12) Jones. The photoconductive response of α-In2Se3 nanosheets extends into ultraviolet, visible, and near-infrared spectral regions. The high photocurrent response is attributed to the direct band gap (EG = 1.3 eV) of In2Se3 combined with a large surface-area-to-volume ratio and a self-terminated/native-oxide-free surface, which help to reduce carrier recombination while keeping fast response, allowing for real-time detection under very low-light conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.