During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including 3
rd
dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is less after infection compared to all vaccines evaluated, but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks post-vaccination in some cases. SARS-CoV-2 antibody specificity, breadth and maturation are affected by imprinting from exposure history, and distinct histological and antigenic contexts in infection compared to vaccination.
The relationship of SARS-CoV-2 pulmonary infection and severity of disease is not fully understood. Here we show analysis of autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter-patient and intra-patient heterogeneity of pulmonary virus infection. There is a spectrum of high and low virus cases associated with duration of disease. High viral cases have high activation of interferon pathway genes and a predominant M1-like macrophage infiltrate. Low viral cases are more heterogeneous likely reflecting inherent patient differences in the evolution of host response, but there is consistent indication of pulmonary epithelial cell recovery based on napsin A immunohistochemistry and RNA expression of surfactant and mucin genes. Using a digital spatial profiling platform, we find the virus corresponds to distinct spatial expression of interferon response genes demonstrating the intra-pulmonary heterogeneity of SARS-CoV-2 infection.
We generated mice in which a functional RAG2:GFP fusion gene is knocked in to the endogenous RAG2 locus. In bone marrow and thymus, RAG2:GFP expression occurs in appropriate stages of developing B and T cells as well as in immature bone marrow IgM+ B cells. RAG2:GFP also is expressed in IgD+ B cells following cross-linking of IgM on immature IgM+ IgD+ B cells generated in vitro. RAG2:GFP expression is undetectable in most immature splenic B cells; however, in young RAG2:GFP mice, there are substantial numbers of splenic RAG2:GFP+ cells that mostly resemble pre-B cells. The latter population decreases in size with age but reappears following immunization of older RAG2:GFP mice. We discuss the implications of these findings for current models of receptor assembly and diversification.
We generated mice harboring germline mutations in which the enhancer element located 9 kb 3' of the immunoglobulin kappa light chain gene (3'E kappa) was replaced either by a single loxP site (3'E kappa delta) or by a neomycin resistance gene (3'E kappa N). Mice homozygous for the 3'E(kappa delta) mutation had substantially reduced numbers of kappa-expressing B cells and increased numbers of lambda-expressing B cells accompanied by decreased kappa versus lambda gene rearrangement. In these mutant mice, kappa expression was reduced in resting B cells, but was normal in activated B cells. The homozygous 3'E(kappa)N mutation resulted in a similar but more pronounced phenotype. Both mutations acted in cis. These studies show that the 3'E(kappa) is critical for establishing the normal kappa/lambda ratio, but is not absolutely essential for kappa gene rearrangement or, surprisingly, for normal kappa expression in activated B cells. These studies also imply the existence of additional regulatory elements that have overlapping function with the 3'E(kappa) element.
T cell receptor (TCR) beta chain allelic exclusion occurs at the thymocyte CD4- 8- (double-negative, or DN) to CD4+ 8+ (double-positive, or DP) transition, concurrently with differentiation and cellular expansion, and is imposed by a negative feedback loop in which a product of the first rearranged TCRbeta allele arrests further recombination in the TCRbeta locus. All of the major events associated with the development of DP cells can be induced by the introduction of TCRbeta or activated Lck transgenes. Here, we present evidence that the signaling pathways that promote thymocyte differentiation and expansion of RAG-deficient DN cells but not those that suppress rearrangements of endogenous TCRbeta genes in normal DN cells are engaged by activated Ras. We propose that TCRbeta allelic exclusion is mediated by effector pathways downstream of Lck but independent of Ras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.