Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns. GMH causes neurological sequelae such as cerebral palsy, post-hemorrhagic hydrocephalus, and mental retardation. Despite this, there is no standardized animal model of spontaneous GMH using newborn rats to depict the condition. We asked whether stereotactic injection of collagenase type VII (0.3 U) into the ganglionic eminence of neonatal rats would reproduce the acute brain injury, gliosis, hydrocephalus, periventricular leukomalacia, and attendant neurological consequences found in humans. To test this hypothesis, we used our neonatal rat model of collagenase-induced GMH in P7 pups, and found that the levels of free-radical adducts (nitrotyrosine and 4-hyroxynonenal), proliferation (mammalian target of rapamycin), inflammation (COX-2), blood components (hemoglobin and thrombin), and gliosis (vitronectin and GFAP) were higher in the forebrain of GMH pups, than in controls. Neurobehavioral testing showed that pups with GMH had developmental delay, and the juvenile animals had significant cognitive and motor disability, suggesting clinical relevance of the model. There was also evidence of white-matter reduction, ventricular dilation, and brain atrophy in the GMH animals. This study highlights an instructive animal model of the neurological consequences after germinal matrix hemorrhage, with evidence of brain injuries that can be used to evaluate strategies in the prevention and treatment of post-hemorrhagic complications.
Cerebral hemodynamic changes in infants with progressive hydrocephalus have been studied with the transcranial Doppler (TCD) technique. Several authors have referred to the correlation between the hemodynamic changes and increased intracranial pressure (ICP). Despite conflicting conclusions on the value of pulsatility index (PI) and resistance index (RI) measurements for monitoring infantile hydrocephalus, these pulsatility indices are the most commonly used for this purpose. Although clinical signs of raised ICP are highly variable and unreliable in infants, assumptions have been made in most of the studies about the presence of elevated ICP on the basis of the patient's clinical state. Few studies have reported on actual ICP values, however, and a direct relationship between ICP and TCD changes has never been adequately demonstrated. In the present study, this relationship was investigated in long-term simultaneous TCD/ICP measurements, in an attempt to develop a noninvasive method of monitoring the effect of ICP on intracranial hemodynamics. Two groups of data sets were established. Group I consisted of pre- and postoperative (shunt implantation) TCD/ICP measurements. Group II were long-term simultaneous TCD/ICP recordings showing significant ICP variations. In most of the postoperative measurements there was a decrease in the average PI and RI values. The correlation between PI or RI and ICP in the long-term simultaneous recordings, however, was generally poor. The risk of obtaining false positive or false negative PI or RI values in short-term measurements was also demonstrated. It can be concluded from our results, besides the wide range of reference values for the Doppler indices and extracranial influences upon them, that the present Doppler indices are inadequate for monitoring the complex intracranial dynamic responses in patients with raised ICP.
IGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.