Abstract-Speech recognition is a vital part in medical transcriptions. The existing speech recognition systems that run as standalone desktop applications fall short in many cases due to low accuracy rates and high processing time. This paper proposes a novel collaborative approach for the automation of speech to text conversion. The model proposed leverages the power of cloud computing and the unique nature of computing. This framework has many real time applications such as in Medical Transcription systems, IVR systems etc., The generic framework here is advantageous, because the speech models in Automatic Speech Recognizer (ASR) could be trained according to specific domain required, allowing wide usability. The proposed speech framework is used for medical transcription process which is automated by using the proposed speech framework. With this system, an android application was developed which acts as a medium between doctors and their patients. The application helps diagnose the patients using their symptoms. The doctors prescribe medicines through this application to patients for various kinds of illness. It is user friendly and secure as it can be used by anyone round the clock. The entire model is developed for a mobile cloud environment considering the characteristics of cloud delivery models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.