A real time simulation is used to analyze two idealized MAGLEV suspensions, one an attraction (ferromagnetic) system and the other a repulsion (cryogenic) system. Performance characteristics are presented. The effects of guideway roughness, guide-way flexibility, and of force nonlinearities are examined. On the basis of the cases investigated, it is concluded that MAGLEV suspension systems for 300 mph vehicles which provide reliable tracking while meeting ride quality criteria can be designed. It is also apparent that a considerable effort is required to achieve MAGLEV system optimization and refinement.
In this paper the ride quality of a vehicle traversing an elevated guideway is related directly to guideway construction tolerances and design parameters. Moreover, the construction tolerances are modeled in terms familiar to a guideway contractor. The tolerances modeled for an elevated, two-span semicontinuous, concrete guideway are: surface finish, camber deviations, pier survey errors, and pier settlement. The major design parameters relating to live-load deflection, stiffness (material and cross-section), and pier spacing are included. A general technique is presented for relating these tolerances to vehicle ride quality by means of a digital computer simulation. Various ride quality criteria are considered, including rms acceleration, acceleration spectral density, acceleration frequency decomposition, and a deterministic state space boundary. Numerical results are presented for a particular vehicle-guideway configuration and as such are valid only for the system considered. It is shown that for this system, equivalent ride quality can be maintained while adjusting the various construction tolerances. This trade-off capability allows the contractor to choose the least costly combination of tolerance parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.