Commercial production of heterologous proteins by yeasts has gained considerable interest. Expression systems have been developed for Saccharomyces cerevisiae and a number of other yeasts. Generally, much attention is paid to the molecular aspects of heterologous-gene expression. The success of this approach is indicated by the high expression levels that have been obtained in shake-flask cultures. For large-scale production however, possibilities and restrictions related to host-strain physiology and fermentation technology also have to be considered. In this review, these physiological and technological aspects have been evaluated with the aid of numerical simulations. Factors that affect the choice of a carbon substrate for large-scale production involve price, purity and solubility. Since oxygen demand and heat production (which are closely linked) limit the attainable growth rate in large-scale processes, the biomass yield on oxygen is also a key parameter. Large-scale processes impose restrictions on the expression system. Many promoter systems that work well in small-scale systems cannot be implemented in industrial environments. Furthermore, large-scale fed-batch fermentations involve a substantial number of generations. Therefore, even low expression-cassette instability has a profound effect on the overall productivity of the system. Multicopy-integration systems may provide highly stable expression systems for industrial processes. Large-scale fed-batch processes are typically performed at a low growth rate. Therefore, effects of a low growth rate on the physiology and product formation rates of yeasts are of key importance. Due to the low growth rates in the industrial process, a substantial part of the substrate carbon is expended to meet maintenance-energy requirements. Factors that reduce maintenance-energy requirements will therefore have a positive effect on product yield. The relationship between specific growth rate and specific product formation rate (kg product-[kg biomass]-1.h-I) is the main factor influencing production levels in large-scale production processes. Expression systems characterized by a high specific rate of product formation at low specific growth rates are highly favourable for large-scale heterologous-protein production.
From a screening of several Kluyveromyces strains, the yeast Kluyveromyces marxianus CBS 6556 was selected for a study of the parameters relevant to the commercial production of inulinase (EC 3.2.1.7). This yeast exhibited superior properties with respect to growth at elevated temperatures (40 to 45°C), substrate specificity, and inulinase production. In sucrose-limited chemostat cultures growing on mineral medium, the amount of enzyme decreased from 52 U mg of cell dry weight-' at D = 0.1 h-l to 2 U mg of cell dry weight1 l at D = 0.8 h-'. Experiments with nitrogen-limited cultures further confirmed that synthesis of the enzyme is negatively controlled by the residual sugar concentration in the culture. High enzyme activities were observed during growth on nonsugar substrates, indicating that synthesis of the enzyme is a result of a derepression/ repression mechanism. A substantial part of the inulinase produced by K. marxianus was associated with the cell wall. The enzyme could be released from the cell wall via a simple chemical treatment of cells. Results are presented on the effect of cultivation conditions on the distribution of the enzyme. Inulinase was active with sucrose, raffinose, stachyose, and inulin as substrates and exhibited an S/I ratio (relative activities with sucrose and inulin) of 15 under standard assay conditions. The enzyme activity decreased with increasing chain length of the substrate.
In the yeast Kluyveromyces marxianus two forms of inulinase were present, namely, an inulinase secreted into the culture fluid and an inulinase retained in the cell wall. Both forms were purified and analyzed by denaturing and nondenaturing polyacrylamide gel electrophoresis. With the use of endo-ID-N-acetyl-glucosaminidase H, it was established that the enzyme retained in the cell wall and the enzyme secreted into the culture fluid have similar subunits consisting of a 64-kDa polypeptide with varying amounts of carbohydrate (26 to 37% of the molecular mass). The two forms of inulinase differed in size because of their differences in subunit aggregation. The enzyme present in the culture fluid was a dimer, and the enzyme retained in the cell wall was a tetramer. The differences in oligomerization did not affect the apparent Km values towards the substrates sucrose and raffinose. These findings support the hypothesis that the retention of glycoproteins in the yeast cell wall may be caused by a permeability barrier towards larger glycoproteins. The amino-terminal end of inulinase was determined and compared with the amino terminus of the closely related invertase. The kinetic and structural evidence indicates that in yeasts two distinct ,3-fructosidases exist, namely, invertase and inulinase.
In vivo hydrolysis of inulin and sucrose was examined in selected yeasts of the genus Kluyveromyces. Cells, grown in sucrose-limited chemostat cultures, were subjected to treatments for the removal of inulinase, the enzyme responsible for the hydrolysis of both inulin and sucrose. The effects of these treatments were studied by measurement of inulin-dependent and sucrose-dependent oxygen consumption by cell suspensions. In Kluyveromyces marxianus var. marxianus, inulinase was partially secreted into the culture fluid. Removal of culture fluid inulinase by washing had no effect on sucrose-dependent oxygen consumption by this yeast. However, this treatment drastically reduced inulin-dependent oxygen consumption. Treatment of washed cells with sulfhydryls removed part of the cell wall-retained inulinase and reduced inulin-dependent oxygen consumption by another 80%. Sucrose-dependent oxygen consumption was less affected, decreasing by 40%. Cell suspensions of K. marxianus var. drosophilarum, K. marxianus var. vanudenii, and Saccharomyces kluyveri rapidly utilized sucrose but not inulin. This is in accordance with the classification of these yeasts as inulin negative. Supernatants of cultures grown at pH 5.5 did not catalyze the hydrolysis of inulin and sucrose. This suggested that these yeasts contained a strictly cell-bound invertase, an enzyme not capable of inulin hydrolysis. However, upon washing, cells became able to utilize inulin. The inulin-dependent oxygen consumption further increased after treatment of the cells with sulfhydryls. These treatments did not affect the sucrose-dependent oxygen consumption of the cells. Apparently, these treatments removed a permeability barrier for inulin that does not exist for sucrose. Nondenaturing polyacrylamide gel electrophoresis and determination of the S/I ratio (relative activity with sucrose and inulin) of enzyme preparations proved that in these yeasts, as in K. marxianus var. marxianus, hydrolysis of sucrose and inulin is catalyzed by the same enzyme, namely inulinase. This cryptic inulinase activity is not a physiological artifact. When cells were inoculated in media of pH 4.5 and incubated at 35°C instead of the standard cultivation conditions used in yeast taxonomy (pH 5.6, 25°C), rapid growth on inulin occurred. Both inulin-and sucrose-hydrolyzing activities could be detected in culture supernatants of these yeasts under these new conditions. Physiological, ecological, and taxonomic aspects of the occurrence and localization of inulinase in Kluyveromyces strains are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.