This article reports on the use of a shock tunnel to study the operation of scramjet powered configurations at sub-orbital velocities above 2 km/s. Thrust, as given by a net thrust equation, is used as a figure of merit throughout the study. After a short description of the shock tunnel used and its operating characteristics, experiments on the combustion release of heat in a constant area duct with hydrogen fuel are reviewed. The interaction between heat release in the combustion wake and the walls of the duct produced pressure distributions which followed a binary scaling law, and indicated that the theoretically expected heat release could be realized in practice, albeit with high pressure or long combustion ducts. This heat release, combined with attainable thrust nozzle characteristics and a modest level of configuration drag, indicated that positive thrust levels could be obtained well into the sub-orbital range of velocities. Development of a stress wave force balance for use in shock tunnels allowed the net thrust generated to be measured for integrated scramjet configurations and, although the combination of model size and shock tunnel operating pressure prevented complete combustion of hydrogen, the cruise condition of zero net thrust was achieved at 2.5 km/s with one configuration, while net thrust was produced with another configuration using an ignition promoter in hydrogen fuel. Nevertheless, the combination of boundary layer separation induced inlet choking and limited operating pressure levels prevented realization of the thrust potential of the fuel. This problem may be alleviated by recent increases in the shock tunnel operating pressures, and by promising research involving inlet injection of the fuel. Research on the drag component of the net thrust equation resulted from the development of a fast response skin friction gauge. It was found that existing theories of turbulent boundary skin friction predicted the skin friction when combustion of hydrogen occurred outside the boundary layer, but combustion within the boundary layer dramatically reduced the skin friction. Finally, for the first time in the world, supersonic combustion was produced in a free flight experiment. This experiment validated shock tunnel results at stagnation enthalpies near 3 MJ/kg.
Heat-transfer rates from a non-equilibrium hypersonic air flow to flat plates at zero and 12° incidence have been measured in a free piston shock tunnel at stagnation enthalpy levels up to 51 MJ kg−1. Nozzle flow conditions resulted in test section velocities up to 8·1 km 8−1 and in an experimental regime in which the free stream was chemically frozen and the flat-plate boundary layer was laminar. Estimates of the gas-phase and surface-reaction Damkohler numbers have been made and the heat-transfer results are discussed in this context. At the highest test-section densities non-equilibrium endothermic gas phase reactions involving oxygen atoms in the boundary layer are suggested as a possible mechanism for the observed low heattransfer rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.