A study of process-induced stresses in advanced fiber-reinforced composite laminates is presented. An analysis of the residual thermal stresses is conducted on the basis of laminate thermoelasticity theory in conjunction with a quasi-three-dimensional finite element method. Formulation of the numerical method is briefly outlined in the paper. To illustrate the fundamental nature of the problem, numerical examples for a quasi-isotropic [0 deg/90 deg/ ± 45 deg]s graphite-epoxy composite system are presented. Complex three-dimensional stress states of significant magnitude are reported. Emphasis is placed on the interlaminar stress distributions along ply interfaces. Effects of laminate stacking sequence on the residual thermal stresses are examined in detail. Implications of the results on deformation and failure of composite laminates are discussed.
In this paper, an analytical procedure is developed for evaluating the filament loading, constrained elastic deformation, and overall stiffness of a circular brush, Filament deformation is computed on the basis of a large displacement mechanics analysis in conjunction with kinematic constraints for a flat, rigid workpart with smooth surface finish. Numerical results are reported which examine the relationship between workpart penetration, brush stiffness, and force distribution characteristics of the workpart contact zone.
Brush seals comprised of closely packed fine-diameter wires are an important innovation in seal technology for turbo-machinery. During service, brush seal bristles are subjected to a complex system of forces that are associated with various working loads including—but not limited to—aerodynamic forces, bristle tip∕rotor contact force, and interbristle interactions. The latter interactions are associated with contact forces that are exerted onto a bristle by adjacent fibers, as both forces and displacements are transmitted throughout the fibrous network. Such interbristle contact forces can be represented as uniformly distributed loads along the lateral surface of the fiber, or as applied discrete loads at various locations along the bristle length. In this paper, the role that uniformly distributed interbristle friction force plays in brush seal hysteresis is examined and reported. The origin of this frictional load is attributed to conjugate interbristle shear forces that arise due to compaction and aggregate displacement of the bristle pack during service. This, in turn, gives rise to a uniformly distributed internal micromoment that resists bending deformation. Numerical studies are reported for a brush seal whose bristle tips are subjected to rotor induced loading that is associated with bristle∕rotor interference or eccentric rotation of the shaft. In order to extend the range of applicability of numerical solutions, results are reported in terms of nondimensional brush seal design parameters. Results indicated that interbristle friction force can give rise to a delayed filament displacement as well as an incomplete bending recovery of bristles. The latter phenomenon can inevitably result in hysteretic “gapping,” i.e., the formation of an annular or crescent space between the rotor and bristle tips, thereby increasing vulnerability of the seal to leakage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.