An algorithm for adaptively controlling genetic algorithm parameter (GAP) coding using fuzzy rules is presented. The fuzzy GAP coding algorithm is compared to the dynamic parameter encoding scheme proposed by Schraudolph and Belew. The performance of the algorithm on a hydraulic brake emulator parameter identification problem is investigated. Fuzzy GAP coding control is shown to dramatically increase the rate of convergence and accuracy of genetic algorithms.
A model of the friction characteristics of carbon brakes is proposed to aid in the understanding of the causes of brake vibration. The model parameters are determined by a genetic algorithm in an attempt to identify differences in friction properties between brake applications during which vibration occurs and those during which there is no vibration. The model computes the brake torque as a function of wheelspeed, brake pressure, and the carbon surface temperature. The surface temperature is computed using a five node temperature model. The genetic algorithm chooses the model parameters to minimize the error between the model output and the torque measured during a dynamometer test. The basics of genetic algorithms and results of the model parameter identification process are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.