Much attention has recently been directed to the development and application of online sample preconcentration and microreactions in capillary electrophoresis using selective adsorbents based on chemical or biological specificity. The basic principle involves two interacting chemical or biological systems with high selectivity and affinity for each other. These molecular interactions in nature usually involve noncovalent and reversible chemical processes. Properly bound to a solid support, an "affinity ligand" can selectively adsorb a "target analyte" found in a simple or complex mixture at a wide range of concentrations. As a result, the isolated analyte is enriched and highly purified. When this affinity technique, allowing noncovalent chemical interactions and biochemical reactions to occur, is coupled on-line to high-resolution capillary electrophoresis and mass spectrometry, a powerful tool of chemical and biological information is created. This paper describes the concept of biological recognition and affinity interaction on-line with high-resolution separation, the fabrication of an "analyte concentrator-microreactor", optimization conditions of adsorption and desorption, the coupling to mass spectrometry, and various applications of clinical and pharmaceutical interest.
A simple method for the separation and characterization of a group of nine basic compounds, comprising seven tricyclic antidepressant and two bronchodilator drugs, by nonaqueous capillary electrophoresis (NACE) employing ultraviolet and mass spectrometry detection is described. After optimization of the electrophoresis separation conditions, including the compositions of the electrolyte and the organic solvent, a reliable separation of all nine basic analytes was achieved in 80 mM ammonium formate dissolved in a methanol-acetonitrite (80:20 v/v) mixture, having an apparent pH of 8.7. The volatile nonaqueous electrolyte system used with a normal electroosmotic flow polarity also provided an optimal separation condition for the characterization of the analytes by mass spectrometry. When results were compared with reversed-phase gradient and isocratic high-performance liquid chromatography (HPLC) methods, the NACE method provided greater efficiency, achieving baseline resolution for all nine basic compounds in less than 30 min. The NACE method is suitable for use as a routine procedure for the rapid separation and characterization of basic compounds and is a viable alternative to HPLC for the separation of a wide range of pharmaceutical drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.