The urease from the ascomycetous fission yeast Schizosaccharomyces pombe was purified about 4000-fold (34% yield) to homogeneity by acetone precipitation, ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column chromatography, and if required, Mono-Q ion-exchange fast protein liquid chromatography. The enzyme was intracellular and only one species of urease was detected by nondenaturing polyacrylamide gel electrophoresis (PAGE). The native enzyme had a M(r) of 212 kDa (Sepharose CL6B-200 gel filtration) and a single subunit was detected with a M(r) of 102 kDa (PAGE with sodium dodecyl sulfate). The subunit stoichiometry was not specifically determined, but the molecular mass estimations indicate that the undissociated enzyme may be a dimer of identical subunits. The specific activity was 700-800 micromols urea.min-1.mg protein-1, the optimum pH for activity was 8.0, and the Km for urea was 1.03 mM. The sequence of the amino terminus was Met-Gln-Pro-Arg-Glu-Leu-His-Lys-Leu-Thr-Leu-His-Gln-Leu-Gly-Ser-Leu-Ala and the sequence of two tryptic peptides of the enzyme were Phe-Ile-Glu-Thr-Asn-Glu-Lys and Leu-Tyr-Ala-Pro-Glu-Asn-Ser-Pro-Gly-Phe-Val-Glu-Val-Leu-Glu-Gly-Glu-Ile- Glu- Leu-Leu-Pro-Asn-Leu-Pro. The N-terminal sequence and physical and kinetic properties indicated that S. pombe urease was more like the plant enzymes than the bacterial ureases.
Samples of fermenting Chardonnay juice were inoculated with five commercial cultures of Leuconostoc oenos to promote malolactic fermentation. Controls were not inoculated with malolactic starter cultures; one was held under the same conditions as the juice inoculated with malolactic starter cultures and the other was held under conditions in which malolactic fermentation was inhibited. Bacterial growth and chemical composition of the wines were monitored for eight weeks after the wines were inoculated with the yeast starter culture. The five strains of L. oenos differed in growth kinetics and rates of malic acid degradation. Significant differences were detected among the finished wines subjected to sensory evaluation.
The utilisation of l‐malate and the effect of glucose concentration on malate utilisation under semii‐anaerobic conditions were evaluated in three yeaest unable to grow the malate as sole cabron source (Saccharomtnes cerevisea, Schhizo‐sacccharomyte malidevorans, Zygosaccharomyces bailii) and two yeasts able to utilise the TCA cycle intermediate as sole carbon source (Pichia stipitis and Pachysolen tannophilus). Utilisation of malate by both Schitz. malidevorans and Z. bailii was reduced at high and low levels of glucose. In the absence of glucose, P. stipitis and Pa. tannophilus utilised malate rapidly; however, their utilisation was drastically redued in the presence of glucose, suggesting that malate utilisation is under catabolite repression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.