Anodic-composite films containing nano-diamond particles (ND) were prepared on 7000 aluminium alloy using an anodising method. The micro-structures of the film were studied by scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and minitab software (version 16). The results indicate that the micro-hardness and wear resistance of the films were improved using the nano-additive. Thus, the wear loss of the composite (the film anodised in the bath containing of sulphric acid, oxalic acid and 85 g L −1 ND) evaluated by dry sliding friction test for 50 000 cycles at room temperature, was 0.4 mg compared to 3 mg in the absence of ND, a 750% improvement. The friction of ND composite anodic films is significantly less than the samples without the added particles. Moreover, the micro-hardness of the composite film reached a maximum value of 770 VHN. The results also show that the mechanical properties of the composite films are mainly dependent on the structure of the oxide films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.