Aeronautic Pitot probes (PPs) are extremely important for airspeed and altitude measurements in aviation. Failure of the instrument due to clogging caused by ice formation can lead to dangerous situations. In this work, a commercial aeronautic PP was characterised experimentally regarding its inner composition, material properties and its thermal performance in a climatic wind tunnel. Performance runs were taken out in order to analyse the thermal response of the PP under various operating conditions with a particular emphasis on the cooling process in the case of a heating element failure. Data for the thermal conductivity, diffusivity and specific heat for each material forming the PP were obtained. A numerical model to simulate the thermal behaviour of the PP was created using Comsol Multiphysics (CM). Experimental data were compared with their numerical counterparts for model validation purposes. After the model was validated, the operation of the PP in flight conditions was simulated. The failure of the conventional heating system was analysed to obtain the time until the PP reaches a tip temperature where ice formation can be expected. The tip temperature undercut the zero degrees Celsius mark 165 seconds after the heating element was switched off. The data collected in this work can be used to implement and validate mathematical models in order to predict the thermal performance of Pitot probes in flight conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.