The clongation of the first internode of fully greenVigna sinensis L. is inhibited by white light (W). This inhibition is fluence-rate dependent between 0 and 70 Wm(-2). The kinetics of elongation rate in the light after darkness were investigated with linear displacement transducers. The internode elongation rate does not exhibit any endogenous rhythm. A rapid inhibition occurs during the first 2 or 3 h after the onset of light, and a second type of inhibition (slow reaction) increases from the beginning to the 8th hour of light. The rapid inhibition is not fluence-rate dependent between 20 and 70 Wm(-2), but the slow reaction is. There is no rapid inhibition in a low fluence rate white light to high fluence rate white light transition, only the slow reaction is observed. The responses to different wavebands, i.e., blue light (B), yellow and green light (YG), and red light (R), are the same for the two inhibition reactions. Each waveband used separately does not reproduce the full effect observed in W. Results show a stimulation with B, a greater inhibition activity with YG than with R, and a synergistic action of B and R which when given together lead to an inhibition similar to that obtained in W. Plants returned from the light to darkness progressively recover a high elongation rate without any latent period. The W light regulating internode elongation rate is mainly perceived by the growing internode itself.
Seven day old etiolated Zea mays L. (cv. Wisconsin 355) seedlings were illuminated for 20 h under monochromatic radiations (100 Á pass band) produced by a spectral illuminator of high energy. Four regions of the visible spectrum were observed to stimulate chlorophyll synthesis. With poorly developed leaves (grown for 7 days at 22°C: experiment A). the most efficient wavelengths were found to be in the blue and green (between 445 and 505 nm). yellow (between 580 and 605 nm) and red (maximum 650 nm) parts of the spectrum. With well developed leaves (grown for 7 clays al 27°C: experiment B), a slight displacement of the maxima towards shorter wavelengths was observed.
14C‐acetate was furnished to illuminated maize seedlings to follow lipid synthesis during greening. In the leaves of experiment A, the biosynthesis of α‐linolenic acid and monogalactosyldiacylglycerol followed chlorophyll accumulation. In the more developed leaves of experiment B. containing higher amounts of galactolipids, the biosynthesis of α‐linolenic acid and monogalactosyldiacylglycerol followed chlorophyll accumulation only in blue and yellow light. The biosynthesis of trans‐3‐hexadecenoic acid was strictly dependent on the wavelength of the irradiating light in the leaves of experiment A; it was optimal under blue (420 nm) and still very high under yellow (580 nm) and red (650 nm). In the more developed leaves of experiment B, it was optima in blue (445 nm) and in yellow (580 nm), and the red maximum was shifted to 630 nm. All C‐trans‐3‐hexadecenoic acid was incorporated into phosphatidylglycerol.
A marked relationship was observed between the intensity of galactolipid synthesis and the development of the lamellar system of maize plastids during greening. A positive correlation could be established between the biosynthesis of trans‐3‐hcxadeccnoie acid and the development of well constituted grana stacks in the plastids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.