Dumping of food wastes into the landfill resulted in major environmental pollution. However, attempted had been made to develop these wastes into a new renewable and sustainable energy. Liquid biofuels, bioethanol can be produced from a variety of feedstock including biomass and food crops or wastes. Therefore, in this study, starchy food wastes of bread, rice and potatoes were utilized as a potential feedstock for the bioethanol production. Yeast Saccharomyces cerevisiae was immobilized in 2% calcium alginate beads using entrapment technique. Then, the effect of temperature on bioethanol efficiency was investigated using the immobilized yeasts. From the result, highest fermentation efficiency of 1.24% was obtained at temperature 30°C, 48 h with agitation speed of 150 rpm. However, further research and studies are required in order to optimize the bioethanol production from fermentation process of starchy foodwastes.
Various minerals in Kelulut honey possess a high value in human health and are crucial in regulating multiple biological metabolisms. However, each mineral from different honey sources needs to be monitored to avoid contamination and food poisoning. In addition, the amount of minerals content varies based on geographical region and nectar sources. This study aims to identify and determine the minerals content in Kelulut honey samples collected from different locations on the West Coast of Sabah. The samples were analyzed using ICP-OES, and a total of 20 minerals elements (Ag, Al, As, Ca, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Rb, Se, Sr, Ti, V, and Zn) were presented. The most abundant minerals which are categorized as macro minerals present in all the samples are K (1821.253 ± 35.16 mg/kg), followed by Na (371.00±5.06 mg/kg), Ca (338.643±3.07 mg/kg), and Mg (98.899±1.77 mg/kg). While from the group of minor minerals, Zn had the highest amount with a mean concentration of 6.38±10.35 mg/kg, followed by Mn (2.04±1.61 mg/kg), Cu (1.26±2.97mg/kg). No toxic elements were detected except for Ag (0.06±0.01 mg/kg), considered unbeneficial minerals, and the concentration was considered no harmful effect on the biological system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.