Every day, websites and personal archives create more and more photos. The size of these archives is immeasurable. The comfort of use of these huge digital image gatherings donates to their admiration. However, not all of these folders deliver relevant indexing information. From the outcomes, it is difficult to discover data that the user can be absorbed in. Therefore, in order to determine the significance of the data, it is important to identify the contents in an informative manner. Image annotation can be one of the greatest problematic domains in multimedia research and computer vision. Hence, in this paper, Adaptive Convolutional Deep Learning Model (ACDLM) is developed for automatic image annotation. Initially, the databases are collected from the open-source system which consists of some labelled images (for training phase) and some unlabeled images {Corel 5 K, MSRC v2}. After that, the images are sent to the pre-processing step such as colour space quantization and texture color class map. The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation (JSEG). The final step is an automatic annotation using ACDLM which is a combination of Convolutional Neural Network (CNN) and Honey Badger Algorithm (HBA). Based on the proposed classifier, the unlabeled images are labelled. The proposed methodology is implemented in MATLAB and performance is evaluated by performance metrics such as accuracy, precision, recall and F1_Measure. With the assistance of the proposed methodology, the unlabeled images are labelled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.